Loading…

Protective effects of branched-chain amino acids on hepatic ischemia-reperfusion-induced liver injury in rats: a direct attenuation of Kupffer cell activation

We determined whether there is a protective effect of branched-chain amino acid (BCAA) on hepatic ischemia-reperfusion (I/R)-induced acute liver injury. Wister rats were divided into the following four groups: simple laparotomy with vehicle; simple laparotomy with BCAA (1 g/kg body wt orally); I/R (...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: Gastrointestinal and liver physiology 2013-02, Vol.304 (4), p.G346-G355
Main Authors: Kitagawa, Tomomi, Yokoyama, Yukihiro, Kokuryo, Toshio, Nagino, Masato
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We determined whether there is a protective effect of branched-chain amino acid (BCAA) on hepatic ischemia-reperfusion (I/R)-induced acute liver injury. Wister rats were divided into the following four groups: simple laparotomy with vehicle; simple laparotomy with BCAA (1 g/kg body wt orally); I/R (30 min clamp) with vehicle; and I/R with BCAA. Serum liver function tests and the gene expression of adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule) and vasoconstrictor-related genes (endothelin-1) in the liver were examined. In the in vivo study, portal venous pressure, leukocyte adhesion, and hepatic microcirculation were evaluated. Furthermore, Kupffer cells were isolated and cultured with various concentrations of BCAA in the presence or absence of lipopolysaccharide (LPS). Increased levels of liver function tests following I/R were significantly attenuated by BCAA treatment. The increased expression of adhesion molecules and endothelin-1 was also significantly attenuated by BCAA treatment. Moreover, increased portal venous pressure, enhanced leukocyte adhesion, and deteriorated hepatic microcirculation following I/R were all improved by BCAA treatment. In the experiment using isolated Kupffer cells, the expression of interleukin-6, interleukin-1β, and endothelin-1 in response to LPS stimulation was attenuated by BCAA in a dose-dependent fashion. These results indicate that perioperative oral administration of BCAA has excellent therapeutic potential to reduce I/R-induced liver injury. These beneficial effects may result from the direct attenuation of Kupffer cell activation under stressful conditions.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00391.2012