Loading…

Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions

A highly shape selective synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires has been developed by modulating the coordination chemistry of transition metal ions with a trioctylphosphine (TOP)-Cl(-) ligand pair in oleylamine under mild organic solvent conditions. The as-prepared nanocubes have a fa...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2013-03, Vol.5 (6), p.2394-2402
Main Authors: Guo, Huizhang, Chen, Yuanzhi, Ping, Hemei, Jin, Jiarui, Peng, Dong-Liang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A highly shape selective synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires has been developed by modulating the coordination chemistry of transition metal ions with a trioctylphosphine (TOP)-Cl(-) ligand pair in oleylamine under mild organic solvent conditions. The as-prepared nanocubes have a face-centered cubic (fcc) phase and are covered by six {100} facets, whereas the as-prepared nanowires have a multi-twinned structure and grow along the [110] direction. Both the Ni(2+) and Cl(-) ions, along with TOP, play vital roles in determining the final morphology of the as-prepared nanocrystals (NCs). TOP can be used to selectively generate single-crystal seeds at the initial stage, which then grow into nanocubes in the presence of Cl(-) ions, while the absence of TOP leads to the formation of multi-twined crystal seeds that finally develop into nanowires. Moreover, Ni can be incorporated to form a Cu-Ni alloy shell over a Cu core at higher temperatures in a one-pot process, which makes diamagnetic Cu NCs magnetically responsive and has a significant influence on their optical properties.
ISSN:2040-3364
2040-3372
DOI:10.1039/c3nr33142c