Loading…

Optimal consumption and investment for markets with random coefficients

We consider an optimal investment and consumption problem for a Black–Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on CRRA utility functions. The dynamic programming approach leads to an...

Full description

Saved in:
Bibliographic Details
Published in:Finance and stochastics 2013-04, Vol.17 (2), p.419-446
Main Authors: Berdjane, Belkacem, Pergamenshchikov, Serguei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider an optimal investment and consumption problem for a Black–Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on CRRA utility functions. The dynamic programming approach leads to an investigation of the Hamilton–Jacobi–Bellman (HJB) equation which is a highly nonlinear partial differential equation (PDE) of the second order. By using the Feynman–Kac representation, we prove uniqueness and smoothness of the solution. Moreover, we study the optimal convergence rate of iterative numerical schemes for both the value function and the optimal portfolio. We show that in this case, the optimal convergence rate is super-geometric, i.e., more rapid than any geometric one. We apply our results to a stochastic volatility financial market.
ISSN:0949-2984
1432-1122
DOI:10.1007/s00780-012-0193-0