Loading…
Optimal consumption and investment for markets with random coefficients
We consider an optimal investment and consumption problem for a Black–Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on CRRA utility functions. The dynamic programming approach leads to an...
Saved in:
Published in: | Finance and stochastics 2013-04, Vol.17 (2), p.419-446 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider an optimal investment and consumption problem for a Black–Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on CRRA utility functions. The dynamic programming approach leads to an investigation of the Hamilton–Jacobi–Bellman (HJB) equation which is a highly nonlinear partial differential equation (PDE) of the second order. By using the Feynman–Kac representation, we prove uniqueness and smoothness of the solution. Moreover, we study the optimal convergence rate of iterative numerical schemes for both the value function and the optimal portfolio. We show that in this case, the optimal convergence rate is super-geometric, i.e., more rapid than any geometric one. We apply our results to a stochastic volatility financial market. |
---|---|
ISSN: | 0949-2984 1432-1122 |
DOI: | 10.1007/s00780-012-0193-0 |