Loading…

On deep holes of standard Reed-Solomon codes

Determining deep holes is an important open problem in decoding Reed-Solomon codes. It is well known that the received word is trivially a deep hole if the degree of its Lagrange interpolation polynomial equals the dimension of the Reed-Solomon code. For the standard Reed-Solomon codes [p-1, k]p wit...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Mathematics 2012-12, Vol.55 (12), p.2447-2455
Main Authors: Wu, RongJun, Hong, ShaoFang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Determining deep holes is an important open problem in decoding Reed-Solomon codes. It is well known that the received word is trivially a deep hole if the degree of its Lagrange interpolation polynomial equals the dimension of the Reed-Solomon code. For the standard Reed-Solomon codes [p-1, k]p with p a prime, Cheng and Murray conjectured in 2007 that there is no other deep holes except the trivial ones. In this paper, we show that this conjecture is not true. In fact, we find a new class of deep holes for standard Reed-Solomon codes [q-1, k]q with q a power of the prime p. Let q≥4 and 2≤k≤q-2. We show that the received word u is a deep hole if its Lagrange interpolation polynomial is the sum of monomial of degree q-2 and a polynomial of degree at most k-1. So there are at least 2(q-1)qk deep holes if k q-3.
ISSN:1674-7283
1006-9283
1869-1862
DOI:10.1007/s11425-012-4499-3