Loading…
On the Finite Basis Problem for Certain 2-limited Words
Let X* be a free monoid over an alphabet X and W be a finite language over X. Let S(W) be the Rees quotient X*/I(W), where I(W) is the ideal of X* consisting of all elements of X* that are not subwords of W. Then S(W) is a finite monoid with zero and is called the discrete syntactic monoid of W. W i...
Saved in:
Published in: | Acta mathematica Sinica. English series 2013-03, Vol.29 (3), p.571-590 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let X* be a free monoid over an alphabet X and W be a finite language over X. Let S(W) be the Rees quotient X*/I(W), where I(W) is the ideal of X* consisting of all elements of X* that are not subwords of W. Then S(W) is a finite monoid with zero and is called the discrete syntactic monoid of W. W is called finitely based if the monoid S(W) is finitely based. In this paper, we give some sufficient conditions for a monoid to be non-finitely based. Using these conditions and other results, we describe all finitely based 2-limited words over a three-element alphabet. Furthermore, an explicit algorithm is given to decide that whether or not a 2-limited word in which there are exactly two non-linear letters is finitely based. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-012-0193-1 |