Loading…
Information geometric characterization of the complexity of fractional Brownian motions
The complexity of the fractional Brownian motions is investigated from the viewpoint of information geometry. By introducing a Riemannian metric on the space of their power spectral densities, the geometric structure is achieved. Based on the general construction, for an example, whose power spectra...
Saved in:
Published in: | Journal of mathematical physics 2012-12, Vol.53 (12), p.1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The complexity of the fractional Brownian motions is investigated from the viewpoint of information geometry. By introducing a Riemannian metric on the space of their power spectral densities, the geometric structure is achieved. Based on the general construction, for an example, whose power spectral density is obtained by use of the normalized Mexican hat wavelet, we show its information geometric structures, e.g., the dual connections, the curvatures, and the geodesics. Furthermore, the instability of the geodesic spreads on this manifold is analyzed via the behaviors of the length between two neighboring geodesics, the average volume element as well as the divergence (or instability) of the Jacobi vector field. Finally, the Lyapunov exponent is obtained. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4770047 |