Loading…

Epithelial Na+ channel proteins are mechanotransducers of myogenic constriction in rat posterior cerebral arteries

It has been suggested that mechanosensitive ion channels initiate myogenic responses in vessels; however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although previous reports have suggested that epithelial Na+ channel (ENaC) proteins are mechanotransducers in arte...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology 2012-04, Vol.97 (4), p.544-555
Main Authors: Kim, Eok‐Cheon, Ahn, Duck‐Sun, Yeon, Soo‐In, Lim, Mihwa, Lee, Young‐Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been suggested that mechanosensitive ion channels initiate myogenic responses in vessels; however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although previous reports have suggested that epithelial Na+ channel (ENaC) proteins are mechanotransducers in arteries, experimental evidence demonstrating that ENaC proteins are mechanotransducers are not fully elucidated. The goal of the present study was to determine whether the ENaC is a mechanotransducer for the myogenic response by providing supporting evidence in the rat posterior cerebral artery (PCA). We measured the effect of ENaC inhibition on the pressure‐induced myogenic response, Ca2+ concentration and 20 kDa myosin light chain (MLC20) phosphorylation. We detected expression of βENaC and γENaC subunits in rat PCA by Western blots and immunofluorescence. Inhibition of ENaCs with amiloride, ethyl isopropyl amiloride or benzamil blocked the myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with βENaC and γENaC small interfering RNA. The myogenic response was inhibited by elimination of external Na+, which was replaced with N‐methyl‐d‐glucamine. Amiloride and nifedipine inhibited the pressure‐induced increase in Ca2+ concentration. Finally, MLC20 increased when the intraluminal pressure was raised, and the pressure‐induced increase in MLC20 phosphorylation was inhibited by pretreatment with amiloride, and in arteries transfected with βENaC or γENaC small interfering RNA. Our results suggest that ENaCs may play an important role as mechanosensitive ion channels initiating pressure‐induced myogenic responses in rat PCA.
ISSN:0958-0670
1469-445X
DOI:10.1113/expphysiol.2011.062232