Loading…
Inhibitory effects of epi-sesamin on HMGB1-induced vascular barrier disruptive responses in vitro and in vivo
Nuclear DNA-binding protein high mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions, such as sepsis and septic shock. Epi-sesamin (ESM), an important component of Asarum sieboldii roots, is known to exhibit anti-allergic, anti-nociceptive, and ant...
Saved in:
Published in: | Toxicology and applied pharmacology 2013-03, Vol.267 (3), p.201-208 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nuclear DNA-binding protein high mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions, such as sepsis and septic shock. Epi-sesamin (ESM), an important component of Asarum sieboldii roots, is known to exhibit anti-allergic, anti-nociceptive, and anti-fungal effects. However, little is known of its effects on HMGB1-mediated inflammatory responses. Here, we investigated this issue by monitoring the effects of ESM on lipopolysaccharide (LPS) or cecal ligation and the puncture (CLP)-mediated release of HMGB1, and on modulation of HMGB1-mediated inflammatory responses. ESM potently inhibited HMGB1 release, down-regulated HMGB1-dependent inflammatory responses in human endothelial cells, and inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with ESM resulted in reduced CLP-induced release of HMGB1 and sepsis-related mortality. Of particular interest, ESM inhibition of HMGB1-mediated anti-inflammatory activity was more potent than that by sesamin (SM), likely due to differences between their three-dimensional structures. These results indicate that ESM could be a candidate therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
[Display omitted]
► ESM inhibited LPS and CLP induced HMGB1 release. ► ESM reduced HMGB1 and CLP-mediated hyperpermeability. ► ESM inhibited HMGB1-mediated activation of IL-6, and TNF-α. ► ESM reduced sepsis-related mortality. |
---|---|
ISSN: | 0041-008X 1096-0333 |
DOI: | 10.1016/j.taap.2013.01.008 |