Loading…
A Network Model of the Molecular Organization of Chromatin in Drosophila
Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associ...
Saved in:
Published in: | Molecular cell 2013-02, Vol.49 (4), p.759-771 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333 |
container_end_page | 771 |
container_issue | 4 |
container_start_page | 759 |
container_title | Molecular cell |
container_volume | 49 |
creator | van Bemmel, Joke G. Filion, Guillaume J. Rosado, Arantxa Talhout, Wendy de Haas, Marcel van Welsem, Tibor van Leeuwen, Fred van Steensel, Bas |
description | Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression.
[Display omitted]
► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized |
doi_str_mv | 10.1016/j.molcel.2013.01.040 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323813220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276513001330</els_id><sourcerecordid>1312841877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</originalsourceid><addsrcrecordid>eNqNkU1P3DAQQK2KCijwD6qSYy8bPP5InEsltLSlEi2Hwtly7AnrJYm3drYV_fX1KluOCMmyZ-Q3Y_uZkPdAS6BQXazLIfQW-5JR4CWFkgr6hhwDbeqFgEoc7GNWV_KIvEtpTSkIqZpDcsS44EpV9JhcXxY_cPoT4mPxPTjsi9AV0wpz0qPd9iYWt_HBjP6vmXwYd7vLVQxDzsYij6sYUtisfG9OydvO9AnP9usJuf_y-W55vbi5_fpteXmzsKKS00K1qIyRnBrZWCsrDlK61gg0jnWgHHPMutZCK8Eqgx00UNe1QYCmAcM5PyEf576bGH5tMU168Clr6M2IYZs0cMZVnhh9BQpMCVB1nVExozY_KEXs9Cb6wcQnDVTvdOu1nnXrnW5NQWfduezD_oRtO6B7LvrvNwPnM9CZoM1D9Enf_8wdKpo_gzeqysSnmcAs7bfHqJP1OFp0PqKdtAv-5Tv8Ax2nmu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312841877</pqid></control><display><type>article</type><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</creator><creatorcontrib>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</creatorcontrib><description>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression.
[Display omitted]
► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2013.01.040</identifier><identifier>PMID: 23438860</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bayes Theorem ; Bayesian theory ; Binding Sites ; Cell Line ; chromatin ; Chromatin - metabolism ; Chromosomes, Insect - metabolism ; DNA Repair ; DNA Replication ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; gene activation ; Gene Expression Regulation ; genes ; Models, Biological ; Molecular Sequence Annotation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear Proteins - physiology ; Principal Component Analysis ; Protein Binding ; Protein Interaction Mapping ; Protein Interaction Maps ; Protein Processing, Post-Translational ; proteome ; screening</subject><ispartof>Molecular cell, 2013-02, Vol.49 (4), p.759-771</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</citedby><cites>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23438860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Bemmel, Joke G.</creatorcontrib><creatorcontrib>Filion, Guillaume J.</creatorcontrib><creatorcontrib>Rosado, Arantxa</creatorcontrib><creatorcontrib>Talhout, Wendy</creatorcontrib><creatorcontrib>de Haas, Marcel</creatorcontrib><creatorcontrib>van Welsem, Tibor</creatorcontrib><creatorcontrib>van Leeuwen, Fred</creatorcontrib><creatorcontrib>van Steensel, Bas</creatorcontrib><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression.
[Display omitted]
► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian theory</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomes, Insect - metabolism</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>gene activation</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>Models, Biological</subject><subject>Molecular Sequence Annotation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - physiology</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Protein Interaction Maps</subject><subject>Protein Processing, Post-Translational</subject><subject>proteome</subject><subject>screening</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQQK2KCijwD6qSYy8bPP5InEsltLSlEi2Hwtly7AnrJYm3drYV_fX1KluOCMmyZ-Q3Y_uZkPdAS6BQXazLIfQW-5JR4CWFkgr6hhwDbeqFgEoc7GNWV_KIvEtpTSkIqZpDcsS44EpV9JhcXxY_cPoT4mPxPTjsi9AV0wpz0qPd9iYWt_HBjP6vmXwYd7vLVQxDzsYij6sYUtisfG9OydvO9AnP9usJuf_y-W55vbi5_fpteXmzsKKS00K1qIyRnBrZWCsrDlK61gg0jnWgHHPMutZCK8Eqgx00UNe1QYCmAcM5PyEf576bGH5tMU168Clr6M2IYZs0cMZVnhh9BQpMCVB1nVExozY_KEXs9Cb6wcQnDVTvdOu1nnXrnW5NQWfduezD_oRtO6B7LvrvNwPnM9CZoM1D9Enf_8wdKpo_gzeqysSnmcAs7bfHqJP1OFp0PqKdtAv-5Tv8Ax2nmu8</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>van Bemmel, Joke G.</creator><creator>Filion, Guillaume J.</creator><creator>Rosado, Arantxa</creator><creator>Talhout, Wendy</creator><creator>de Haas, Marcel</creator><creator>van Welsem, Tibor</creator><creator>van Leeuwen, Fred</creator><creator>van Steensel, Bas</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20130221</creationdate><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><author>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian theory</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomes, Insect - metabolism</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>gene activation</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>Models, Biological</topic><topic>Molecular Sequence Annotation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - physiology</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Protein Interaction Maps</topic><topic>Protein Processing, Post-Translational</topic><topic>proteome</topic><topic>screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Bemmel, Joke G.</creatorcontrib><creatorcontrib>Filion, Guillaume J.</creatorcontrib><creatorcontrib>Rosado, Arantxa</creatorcontrib><creatorcontrib>Talhout, Wendy</creatorcontrib><creatorcontrib>de Haas, Marcel</creatorcontrib><creatorcontrib>van Welsem, Tibor</creatorcontrib><creatorcontrib>van Leeuwen, Fred</creatorcontrib><creatorcontrib>van Steensel, Bas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Bemmel, Joke G.</au><au>Filion, Guillaume J.</au><au>Rosado, Arantxa</au><au>Talhout, Wendy</au><au>de Haas, Marcel</au><au>van Welsem, Tibor</au><au>van Leeuwen, Fred</au><au>van Steensel, Bas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network Model of the Molecular Organization of Chromatin in Drosophila</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2013-02-21</date><risdate>2013</risdate><volume>49</volume><issue>4</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression.
[Display omitted]
► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23438860</pmid><doi>10.1016/j.molcel.2013.01.040</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2013-02, Vol.49 (4), p.759-771 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323813220 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Bayes Theorem Bayesian theory Binding Sites Cell Line chromatin Chromatin - metabolism Chromosomes, Insect - metabolism DNA Repair DNA Replication Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Drosophila Proteins - physiology gene activation Gene Expression Regulation genes Models, Biological Molecular Sequence Annotation Nuclear Proteins - genetics Nuclear Proteins - metabolism Nuclear Proteins - physiology Principal Component Analysis Protein Binding Protein Interaction Mapping Protein Interaction Maps Protein Processing, Post-Translational proteome screening |
title | A Network Model of the Molecular Organization of Chromatin in Drosophila |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network%20Model%20of%20the%20Molecular%20Organization%20of%20Chromatin%20in%20Drosophila&rft.jtitle=Molecular%20cell&rft.au=van%C2%A0Bemmel,%20Joke%C2%A0G.&rft.date=2013-02-21&rft.volume=49&rft.issue=4&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2013.01.040&rft_dat=%3Cproquest_cross%3E1312841877%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1312841877&rft_id=info:pmid/23438860&rfr_iscdi=true |