Loading…

A Network Model of the Molecular Organization of Chromatin in Drosophila

Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associ...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2013-02, Vol.49 (4), p.759-771
Main Authors: van Bemmel, Joke G., Filion, Guillaume J., Rosado, Arantxa, Talhout, Wendy, de Haas, Marcel, van Welsem, Tibor, van Leeuwen, Fred, van Steensel, Bas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333
cites cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333
container_end_page 771
container_issue 4
container_start_page 759
container_title Molecular cell
container_volume 49
creator van Bemmel, Joke G.
Filion, Guillaume J.
Rosado, Arantxa
Talhout, Wendy
de Haas, Marcel
van Welsem, Tibor
van Leeuwen, Fred
van Steensel, Bas
description Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening >100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression. [Display omitted] ► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized
doi_str_mv 10.1016/j.molcel.2013.01.040
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323813220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276513001330</els_id><sourcerecordid>1312841877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</originalsourceid><addsrcrecordid>eNqNkU1P3DAQQK2KCijwD6qSYy8bPP5InEsltLSlEi2Hwtly7AnrJYm3drYV_fX1KluOCMmyZ-Q3Y_uZkPdAS6BQXazLIfQW-5JR4CWFkgr6hhwDbeqFgEoc7GNWV_KIvEtpTSkIqZpDcsS44EpV9JhcXxY_cPoT4mPxPTjsi9AV0wpz0qPd9iYWt_HBjP6vmXwYd7vLVQxDzsYij6sYUtisfG9OydvO9AnP9usJuf_y-W55vbi5_fpteXmzsKKS00K1qIyRnBrZWCsrDlK61gg0jnWgHHPMutZCK8Eqgx00UNe1QYCmAcM5PyEf576bGH5tMU168Clr6M2IYZs0cMZVnhh9BQpMCVB1nVExozY_KEXs9Cb6wcQnDVTvdOu1nnXrnW5NQWfduezD_oRtO6B7LvrvNwPnM9CZoM1D9Enf_8wdKpo_gzeqysSnmcAs7bfHqJP1OFp0PqKdtAv-5Tv8Ax2nmu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312841877</pqid></control><display><type>article</type><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</creator><creatorcontrib>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</creatorcontrib><description>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening &gt;100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression. [Display omitted] ► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2013.01.040</identifier><identifier>PMID: 23438860</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bayes Theorem ; Bayesian theory ; Binding Sites ; Cell Line ; chromatin ; Chromatin - metabolism ; Chromosomes, Insect - metabolism ; DNA Repair ; DNA Replication ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; gene activation ; Gene Expression Regulation ; genes ; Models, Biological ; Molecular Sequence Annotation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear Proteins - physiology ; Principal Component Analysis ; Protein Binding ; Protein Interaction Mapping ; Protein Interaction Maps ; Protein Processing, Post-Translational ; proteome ; screening</subject><ispartof>Molecular cell, 2013-02, Vol.49 (4), p.759-771</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</citedby><cites>FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23438860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Bemmel, Joke G.</creatorcontrib><creatorcontrib>Filion, Guillaume J.</creatorcontrib><creatorcontrib>Rosado, Arantxa</creatorcontrib><creatorcontrib>Talhout, Wendy</creatorcontrib><creatorcontrib>de Haas, Marcel</creatorcontrib><creatorcontrib>van Welsem, Tibor</creatorcontrib><creatorcontrib>van Leeuwen, Fred</creatorcontrib><creatorcontrib>van Steensel, Bas</creatorcontrib><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening &gt;100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression. [Display omitted] ► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian theory</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomes, Insect - metabolism</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>gene activation</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>Models, Biological</subject><subject>Molecular Sequence Annotation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - physiology</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Protein Interaction Maps</subject><subject>Protein Processing, Post-Translational</subject><subject>proteome</subject><subject>screening</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQQK2KCijwD6qSYy8bPP5InEsltLSlEi2Hwtly7AnrJYm3drYV_fX1KluOCMmyZ-Q3Y_uZkPdAS6BQXazLIfQW-5JR4CWFkgr6hhwDbeqFgEoc7GNWV_KIvEtpTSkIqZpDcsS44EpV9JhcXxY_cPoT4mPxPTjsi9AV0wpz0qPd9iYWt_HBjP6vmXwYd7vLVQxDzsYij6sYUtisfG9OydvO9AnP9usJuf_y-W55vbi5_fpteXmzsKKS00K1qIyRnBrZWCsrDlK61gg0jnWgHHPMutZCK8Eqgx00UNe1QYCmAcM5PyEf576bGH5tMU168Clr6M2IYZs0cMZVnhh9BQpMCVB1nVExozY_KEXs9Cb6wcQnDVTvdOu1nnXrnW5NQWfduezD_oRtO6B7LvrvNwPnM9CZoM1D9Enf_8wdKpo_gzeqysSnmcAs7bfHqJP1OFp0PqKdtAv-5Tv8Ax2nmu8</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>van Bemmel, Joke G.</creator><creator>Filion, Guillaume J.</creator><creator>Rosado, Arantxa</creator><creator>Talhout, Wendy</creator><creator>de Haas, Marcel</creator><creator>van Welsem, Tibor</creator><creator>van Leeuwen, Fred</creator><creator>van Steensel, Bas</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20130221</creationdate><title>A Network Model of the Molecular Organization of Chromatin in Drosophila</title><author>van Bemmel, Joke G. ; Filion, Guillaume J. ; Rosado, Arantxa ; Talhout, Wendy ; de Haas, Marcel ; van Welsem, Tibor ; van Leeuwen, Fred ; van Steensel, Bas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian theory</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomes, Insect - metabolism</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>gene activation</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>Models, Biological</topic><topic>Molecular Sequence Annotation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - physiology</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Protein Interaction Maps</topic><topic>Protein Processing, Post-Translational</topic><topic>proteome</topic><topic>screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Bemmel, Joke G.</creatorcontrib><creatorcontrib>Filion, Guillaume J.</creatorcontrib><creatorcontrib>Rosado, Arantxa</creatorcontrib><creatorcontrib>Talhout, Wendy</creatorcontrib><creatorcontrib>de Haas, Marcel</creatorcontrib><creatorcontrib>van Welsem, Tibor</creatorcontrib><creatorcontrib>van Leeuwen, Fred</creatorcontrib><creatorcontrib>van Steensel, Bas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Bemmel, Joke G.</au><au>Filion, Guillaume J.</au><au>Rosado, Arantxa</au><au>Talhout, Wendy</au><au>de Haas, Marcel</au><au>van Welsem, Tibor</au><au>van Leeuwen, Fred</au><au>van Steensel, Bas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network Model of the Molecular Organization of Chromatin in Drosophila</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2013-02-21</date><risdate>2013</risdate><volume>49</volume><issue>4</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Chromatin governs gene regulation and genome maintenance, yet a substantial fraction of the chromatin proteome is still unexplored. Moreover, a global model of the chromatin protein network is lacking. By screening &gt;100 candidates we identify 42 Drosophila proteins that were not previously associated with chromatin, which all display specific genomic binding patterns. Bayesian network modeling of the binding profiles of these and 70 known chromatin components yields a detailed blueprint of the in vivo chromatin protein network. We demonstrate functional compartmentalization of this network, and predict functions for most of the previously unknown chromatin proteins, including roles in DNA replication and repair, and gene activation and repression. [Display omitted] ► DamID identifies 42 previously unknown chromatin proteins ► Binding maps of new and known chromatin components yield a chromatin network model ► The network model predicts functions of most of the 42 new chromatin proteins ► The chromatin protein network is functionally compartmentalized</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23438860</pmid><doi>10.1016/j.molcel.2013.01.040</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2013-02, Vol.49 (4), p.759-771
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1323813220
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Bayes Theorem
Bayesian theory
Binding Sites
Cell Line
chromatin
Chromatin - metabolism
Chromosomes, Insect - metabolism
DNA Repair
DNA Replication
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Drosophila Proteins - physiology
gene activation
Gene Expression Regulation
genes
Models, Biological
Molecular Sequence Annotation
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuclear Proteins - physiology
Principal Component Analysis
Protein Binding
Protein Interaction Mapping
Protein Interaction Maps
Protein Processing, Post-Translational
proteome
screening
title A Network Model of the Molecular Organization of Chromatin in Drosophila
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network%20Model%20of%20the%20Molecular%20Organization%20of%20Chromatin%20in%20Drosophila&rft.jtitle=Molecular%20cell&rft.au=van%C2%A0Bemmel,%20Joke%C2%A0G.&rft.date=2013-02-21&rft.volume=49&rft.issue=4&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2013.01.040&rft_dat=%3Cproquest_cross%3E1312841877%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-8be8aa530a59cc563155dba4ead2f18d2d2cdbc1b51c8aef191777ae11991a333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1312841877&rft_id=info:pmid/23438860&rfr_iscdi=true