Loading…
New Multifunctional Di-tert-butylphenoloctahydro(pyrido/benz)oxazine Derivatives with Antioxidant, Antihyperlipidemic, and Antidiabetic Action
Oxidative stress, inflammation, and hyperlipidemia are common factors involved in the pathophysiology of atherosclerosis and type 2 diabetes. We have previously developed multifunctional antidyslipidemic derivatives with antioxidant and antiatherogenic properties. We now report the design, synthesis...
Saved in:
Published in: | Journal of medicinal chemistry 2013-04, Vol.56 (8), p.3330-3338 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidative stress, inflammation, and hyperlipidemia are common factors involved in the pathophysiology of atherosclerosis and type 2 diabetes. We have previously developed multifunctional antidyslipidemic derivatives with antioxidant and antiatherogenic properties. We now report the design, synthesis, and evaluation of two such novel derivatives that incorporate a structural moiety of the antidiabetic agent succinobucol. The new compounds exhibited a much improved in vitro antioxidant and squalene synthase inhibitory activity (at lower micromolar concentrations) as well as a significant antihyperlipidemic effect, reducing plasma total cholesterol, triglycerides, and MDA by 65–90%. Compound 2 also indicated a good anti-inflammatory activity, decreasing edema by 44%, while it was further evaluated for its antidiabetic activity using a type 2 diabetes experimental mouse model. After 7 weeks of administration, it produced a significant antihyperglycemic and antihyperlipidemic activity. In conclusion, rational drug design led to a compound combining improved antioxidant, antidyslipidemic, and antidiabetic action that may serve as a potential therapeutic strategy in metabolic syndrome disorders. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm400101e |