Loading…
How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?
Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2013-05, Vol.42 (20), p.7433-7439 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c3dt32980a |