Loading…
17,300-year record of mercury accumulation in a pristine lake in southern Chile
Anthropogenic mercury accumulation in lake sediments has been studied extensively, but natural processes that controlled mercury accumulation in the past are still poorly understood. We present a 17,300-year record of mercury accumulation in the sediments of Lake Hambre, southernmost Patagonia, Chil...
Saved in:
Published in: | Journal of paleolimnology 2013-04, Vol.49 (4), p.547-561 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anthropogenic mercury accumulation in lake sediments has been studied extensively, but natural processes that controlled mercury accumulation in the past are still poorly understood. We present a 17,300-year record of mercury accumulation in the sediments of Lake Hambre, southernmost Patagonia, Chile (53°S, 70°W), in combination with an investigation of environmental changes in the region. Mercury accumulation in the remote pristine lake varied appreciably, as much as 16×, exceeding the anthropogenic forcing of atmospheric mercury fluxes by a factor of 3–5. Principal Component Analysis revealed that short-term variations were not related to changes in atmospheric mercury deposition or to fluxes of mineral soil into the lake. Instead, there was significant covariation between short-term changes in mercury and catchment-derived trace elements, e.g. copper and yttrium, throughout the past 17,000 years. Covariation between mercury and carbon concentration in some parts of the record suggests that fluxes of particulate and dissolved organic matter from the catchment to the lake account for short-term variations in mercury accumulation. Nevertheless, over the long term, there is no common trend for mercury accumulation and organic matter flux. The median mercury accumulation rate was rather constant (29 μg m⁻² a⁻¹), whereas the flux of terrestrial organic matter into the lake increased through time. We hypothesize that this was a consequence of a progressive decrease in the input of terrestrial organic matter-bound mercury through time. Whereas production of terrestrial organic matter increased over the long term because of development of catchment vegetation and soils, following glacier retreat, amounts of mercury, copper and yttrium provided by atmospheric deposition and bedrock weathering remained relatively constant. As a consequence, despite increased fluxes of terrestrial organic matter to the lake, fluxes of mercury remained constant. |
---|---|
ISSN: | 0921-2728 1573-0417 |
DOI: | 10.1007/s10933-012-9668-4 |