Loading…
Influence of Aluminum Particle Size on Thermal Decomposition of RDX
The effect of aluminum particle size (10.7 µm, 2.6 µm, and 40 nm) on the thermal decomposition of 1,3,5-trimethylene trinitramine (RDX) was investigated using differential scanning calorimetry (DSC), thermogravimetry-derivative thermogravimetry (TG-DTG), and DSC-TG-mass spectrometry (MS)-Fourier tra...
Saved in:
Published in: | Journal of energetic materials 2013-07, Vol.31 (3), p.178-191 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of aluminum particle size (10.7 µm, 2.6 µm, and 40 nm) on the thermal decomposition of 1,3,5-trimethylene trinitramine (RDX) was investigated using differential scanning calorimetry (DSC), thermogravimetry-derivative thermogravimetry (TG-DTG), and DSC-TG-mass spectrometry (MS)-Fourier transform infrared (FTIR) spectroscopy, respectively. The results showed that the first exothermic peak (512 K) of RDX diminishes gradually with an increase in the nanosize aluminum content and is overcome by the second exothermic peak when the content of nano-Al reaches 30 wt%. The reaction mechanisms demonstrated by the nonisothermal kinetics of RDX in the absence and presence of 30 wt% Al were conformed to the Avrami-Erofeev equations for all of the RDX compositions. The nucleus growth factor for the RDX/40 nm Al mixture was found to be n = 2/3 compared to n = 3/4 for RDX with and without the microsized Al. The MS and FTIR analyses indicated that the thermal decomposition of RDX in the presence of Al nanopowders favors C-N bond cleavage over N-N bond cleavage as the rate determining step. |
---|---|
ISSN: | 0737-0652 1545-8822 |
DOI: | 10.1080/07370652.2012.688788 |