Loading…
Assessment of density functional methods with correct asymptotic behavior
Long-range corrected (LC) hybrid functionals and asymptotically corrected (AC) model potentials are two distinct density functional methods with correct asymptotic behavior. They are known to be accurate for properties that are sensitive to the asymptote of the exchange-correlation potential, such a...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2013-06, Vol.15 (21), p.8352-8361 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long-range corrected (LC) hybrid functionals and asymptotically corrected (AC) model potentials are two distinct density functional methods with correct asymptotic behavior. They are known to be accurate for properties that are sensitive to the asymptote of the exchange-correlation potential, such as the highest occupied molecular orbital energies and Rydberg excitation energies of molecules. To provide a comprehensive comparison, we investigate the performance of the two schemes and others on a very wide range of applications, including asymptote problems, self-interaction-error problems, energy-gap problems, charge-transfer problems and many others. The LC hybrid scheme is shown to consistently outperform the AC model potential scheme. In addition, to be consistent with the molecules collected in the IP131 database [Y.-S. Lin, C.-W. Tsai, G.-D. Li and J.-D. Chai, J. Chem. Phys., 2012, 136, 154109], we expand the EA115 and FG115 databases to include, respectively, the vertical electron affinities and fundamental gaps of the additional 16 molecules and develop a new database, AE113 (113 atomization energies), consisting of accurate reference values for the atomization energies of the 113 molecules in IP131. These databases will be useful for assessing the accuracy of density functional methods. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c3cp50441g |