Loading…
Haptically guided robotic technology in total hip arthroplasty: A cadaveric investigation
The longevity of total hip arthroplasty (THA) continues to improve with advancements in design and bearing materials. However, the incidence of dislocation and impingement-related failures continue to rise, with the inability of the surgeon to achieve optimal component orientation cited as a cause....
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2013-03, Vol.227 (3), p.302-309 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The longevity of total hip arthroplasty (THA) continues to improve with advancements in design and bearing materials. However, the incidence of dislocation and impingement-related failures continue to rise, with the inability of the surgeon to achieve optimal component orientation cited as a cause. Computer-assistance has been shown to increase the accuracy of component orientation and robotic-assistance has been developed to translate this advantage into precise surgical execution. We sought to validate a haptically-guided robotic arm system in performing THA with the aim of comparing the accuracy of robotic-assisted acetabular cup placement to manual placement. We implanted 12 acetabular components in 6 cadaveric pelvises comparing robotic-assistance on one side with manual implantation on the other. We measured planned and actual center of rotation (COR), cup position, leg-length equalization and offset for each THA using computed tomography and the robotic platform. The root-mean-square (RMS) error for the robotic-assisted system was within 3° for cup placement and within 1mm for leg-length equalization and offset when compared to computed tomography. The robotic-assisted system was significantly more accurate than manual implantation in reproducing the COR and cup orientation, as determined by a preoperative plan. The RMS error for manual implantation compared to robotic-assistance was 5 times higher for cup inclination and 3.4 times higher for cup anteversion (p |
---|---|
ISSN: | 0954-4119 2041-3033 |
DOI: | 10.1177/0954411912468540 |