Loading…
Multi-output local Gaussian process regression: Applications to uncertainty quantification
We develop an efficient, Bayesian Uncertainty Quantification framework using a novel treed Gaussian process model. The tree is adaptively constructed using information conveyed by the observed data about the length scales of the underlying process. On each leaf of the tree, we utilize Bayesian Exper...
Saved in:
Published in: | Journal of computational physics 2012-07, Vol.231 (17), p.5718-5746 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop an efficient, Bayesian Uncertainty Quantification framework using a novel treed Gaussian process model. The tree is adaptively constructed using information conveyed by the observed data about the length scales of the underlying process. On each leaf of the tree, we utilize Bayesian Experimental Design techniques in order to learn a multi-output Gaussian process. The constructed surrogate can provide analytical point estimates, as well as error bars, for the statistics of interest. We numerically demonstrate the effectiveness of the suggested framework in identifying discontinuities, local features and unimportant dimensions in the solution of stochastic differential equations. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2012.04.047 |