Loading…
Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells
A thermally reduced graphene oxide (TRGO) grown with carbon nanotubes composite (G-CNT) was utilized as three-dimensional highly conductive carbon scaffolds, where a large amount of small and homogeneous Pt nanoparticles (from 3.37 ± 1.22 to 4.24 ± 1.83 nm) was directly synthesized on G-CNT to acqui...
Saved in:
Published in: | Energy (Oxford) 2013-05, Vol.53, p.282-287 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A thermally reduced graphene oxide (TRGO) grown with carbon nanotubes composite (G-CNT) was utilized as three-dimensional highly conductive carbon scaffolds, where a large amount of small and homogeneous Pt nanoparticles (from 3.37 ± 1.22 to 4.24 ± 1.83 nm) was directly synthesized on G-CNT to acquire a new type of catalyst (Pt/G-CNT). Meanwhile, Pt nanoparticles loaded on TRGO (Pt/TRGO) and on TRGO blended with carbon nanotubes (Pt/G-b-CNT) were prepared for comparison. The G-CNT showed a very high electrical conductivity (144.4 S cm−1) compared to the G-b-CNT (67.5 S cm−1) and TRGO (9.1 S cm−1). In contrast to Pt/G-b-CNT (36.8 m2 g−1) and Pt/TRGO (28.1 m2 g−1), Pt/G-CNT showed a very high electrochemically active surface area (77.4 m2 g−1). As these catalysts were utilized as the anode for the fuel cell, the maximum power density value for Pt/G-CNT (32.0 mW cm−2) was about 65% and 74% higher than that of Pt/G-b-CNT (19.4 mW cm−2) and Pt/TRGO (18.4 mW cm−2), respectively, and 26% higher than that of E-TEK (25.4 mW cm−2).
► A thermally reduced graphene oxide grown with CNT composite (G-CNT) was utilized as 3D highly conductive carbon scaffolds. ► The maximum current density for Pt/G-CNT was 23% higher than that of the commercial catalyst (E-TEK). ► The maximum power density value for Pt/G-CNT was 26% higher than that of E-TEK. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2013.03.002 |