Loading…
The convex-concave characteristics of Gaussian channel capacity functions
In this correspondence, we give several inherent properties of the capacity function of a Gaussian channel with and without feedback by using some operator inequalities and matrix analysis. We give a new proof method which is different from the method appearing in: K. Yanagi and H. W. Chen, "Op...
Saved in:
Published in: | IEEE transactions on information theory 2006-05, Vol.52 (5), p.2167-2172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this correspondence, we give several inherent properties of the capacity function of a Gaussian channel with and without feedback by using some operator inequalities and matrix analysis. We give a new proof method which is different from the method appearing in: K. Yanagi and H. W. Chen, "Operator inequality and its application to information theory," Taiwanese J. Math., vol. 4, no. 3, pp. 407-416, Sep. 2000. We obtain the following results: C/sub n,Z/(P) and C/sub n,FB,Z/(P) are both concave functions of P, C/sub n,Z/(P) is a convex function of the noise covariance matrix and C/sub n,FB,Z/(P) is a convex-like function of the noise covariance matrix. This new proof method is very elementary and the results shall help study the capacity of Gaussian channel. Finally, we state a conjecture concerning the convexity of C/sub n,FB,/spl middot//(P). |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2006.872851 |