Loading…
Photoresponsive two-component organogelators based on trisphenylisoxazolylbenzene
Photochromic tris(phenylisoxazolyl)benzene 1 and bispyridine derivatives 2a–e were mixed in a certain ratio to generate stable gels in benzyl alcohol, 4-methoxybenzyl alcohol, and aniline. Supramolecular assembly of 1 in solution was confirmed by 1H NMR study. The Tgel value was saturated in a 2 : 3...
Saved in:
Published in: | Organic & biomolecular chemistry 2013-07, Vol.11 (25), p.4164-4170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photochromic tris(phenylisoxazolyl)benzene 1 and bispyridine derivatives 2a–e were mixed in a certain ratio to generate stable gels in benzyl alcohol, 4-methoxybenzyl alcohol, and aniline. Supramolecular assembly of 1 in solution was confirmed by 1H NMR study. The Tgel value was saturated in a 2 : 3 ratio of 1 and 2c. The intermolecular hydrogen bonds OH···N and salt bridge O(−)···H(–)N(+) between 1 and 2c coexisted evidently, and these hydrogen bonds contributed to the stabilization of the gel networks. The lengths of alkyl chains of 2a–e governed the stabilities of the gels. The gel formations were driven by the morphological transition of 1 before and after the addition of 2a–e. Mixtures of 1 and 2a–e led to the well developed fibrillar networks, generating a lot of voids that are responsible for immobilizing solvent molecules. When the benzyl alcohol gel was irradiated at 360 nm, the gel turned to the sol. The sol was reversed to the gel by warming. This gel-to-sol phase transition was completely reversible. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c3ob00041a |