Loading…

Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5

Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-07, Vol.135 (30), p.11087-11099
Main Authors: Forde, Michael M, Armstrong, Robert D, Hammond, Ceri, He, Qian, Jenkins, Robert L, Kondrat, Simon A, Dimitratos, Nikolaos, Lopez-Sanchez, Jose Antonio, Taylor, Stuart H, Willock, David, Kiely, Christopher J, Hutchings, Graham John
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433
cites cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433
container_end_page 11099
container_issue 30
container_start_page 11087
container_title Journal of the American Chemical Society
container_volume 135
creator Forde, Michael M
Armstrong, Robert D
Hammond, Ceri
He, Qian
Jenkins, Robert L
Kondrat, Simon A
Dimitratos, Nikolaos
Lopez-Sanchez, Jose Antonio
Taylor, Stuart H
Willock, David
Kiely, Christopher J
Hutchings, Graham John
description Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.
doi_str_mv 10.1021/ja403060n
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1416695204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1416695204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</originalsourceid><addsrcrecordid>eNptkM1KAzEURoMotlYXvoBkI-hiND8zmcxShlaFSgXtxs2QJpk6ZZrUJAN25yv4ij6JKa1dubrcj8PHvQeAc4xuMCL4diFSRBFD5gD0cUZQkmHCDkEfIUSSnDPaAyfeL-KaEo6PQY9QjkieFX3w9CxcaEQLJ5-NEqGxBtoaDsO7MBoGG-P1XBsRtIdT35g5HOkECqNg2SWlNUE0ZpO-vTz9fH1np-CoFq3XZ7s5ANPR8LV8SMaT-8fybpwIynFIiK4LJrViaTFjnDKKmWCY1DknlIp6xhnCqUYZU1RiyXOspFKERVBqTlJKB-Bq27ty9qPTPlTLxkvdtvFq2_kKp5ixIppII3q9RaWz3jtdVyvXLIVbVxhVG3vV3l5kL3a13Wyp1Z780xWByy0gpK8WtnMmfvlP0S-OiXRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416695204</pqid></control><display><type>article</type><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</creator><creatorcontrib>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</creatorcontrib><description>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja403060n</identifier><identifier>PMID: 23802759</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2013-07, Vol.135 (30), p.11087-11099</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</citedby><cites>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23802759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forde, Michael M</creatorcontrib><creatorcontrib>Armstrong, Robert D</creatorcontrib><creatorcontrib>Hammond, Ceri</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Jenkins, Robert L</creatorcontrib><creatorcontrib>Kondrat, Simon A</creatorcontrib><creatorcontrib>Dimitratos, Nikolaos</creatorcontrib><creatorcontrib>Lopez-Sanchez, Jose Antonio</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Willock, David</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Hutchings, Graham John</creatorcontrib><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEURoMotlYXvoBkI-hiND8zmcxShlaFSgXtxs2QJpk6ZZrUJAN25yv4ij6JKa1dubrcj8PHvQeAc4xuMCL4diFSRBFD5gD0cUZQkmHCDkEfIUSSnDPaAyfeL-KaEo6PQY9QjkieFX3w9CxcaEQLJ5-NEqGxBtoaDsO7MBoGG-P1XBsRtIdT35g5HOkECqNg2SWlNUE0ZpO-vTz9fH1np-CoFq3XZ7s5ANPR8LV8SMaT-8fybpwIynFIiK4LJrViaTFjnDKKmWCY1DknlIp6xhnCqUYZU1RiyXOspFKERVBqTlJKB-Bq27ty9qPTPlTLxkvdtvFq2_kKp5ixIppII3q9RaWz3jtdVyvXLIVbVxhVG3vV3l5kL3a13Wyp1Z780xWByy0gpK8WtnMmfvlP0S-OiXRA</recordid><startdate>20130731</startdate><enddate>20130731</enddate><creator>Forde, Michael M</creator><creator>Armstrong, Robert D</creator><creator>Hammond, Ceri</creator><creator>He, Qian</creator><creator>Jenkins, Robert L</creator><creator>Kondrat, Simon A</creator><creator>Dimitratos, Nikolaos</creator><creator>Lopez-Sanchez, Jose Antonio</creator><creator>Taylor, Stuart H</creator><creator>Willock, David</creator><creator>Kiely, Christopher J</creator><creator>Hutchings, Graham John</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130731</creationdate><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><author>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forde, Michael M</creatorcontrib><creatorcontrib>Armstrong, Robert D</creatorcontrib><creatorcontrib>Hammond, Ceri</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Jenkins, Robert L</creatorcontrib><creatorcontrib>Kondrat, Simon A</creatorcontrib><creatorcontrib>Dimitratos, Nikolaos</creatorcontrib><creatorcontrib>Lopez-Sanchez, Jose Antonio</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Willock, David</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Hutchings, Graham John</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forde, Michael M</au><au>Armstrong, Robert D</au><au>Hammond, Ceri</au><au>He, Qian</au><au>Jenkins, Robert L</au><au>Kondrat, Simon A</au><au>Dimitratos, Nikolaos</au><au>Lopez-Sanchez, Jose Antonio</au><au>Taylor, Stuart H</au><au>Willock, David</au><au>Kiely, Christopher J</au><au>Hutchings, Graham John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-07-31</date><risdate>2013</risdate><volume>135</volume><issue>30</issue><spage>11087</spage><epage>11099</epage><pages>11087-11099</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23802759</pmid><doi>10.1021/ja403060n</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-07, Vol.135 (30), p.11087-11099
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1416695204
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Oxidation%20of%20Ethane%20to%20Oxygenates%20Using%20Fe-%20and%20Cu-Containing%20ZSM%E2%80%915&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Forde,%20Michael%20M&rft.date=2013-07-31&rft.volume=135&rft.issue=30&rft.spage=11087&rft.epage=11099&rft.pages=11087-11099&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja403060n&rft_dat=%3Cproquest_cross%3E1416695204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1416695204&rft_id=info:pmid/23802759&rfr_iscdi=true