Loading…
Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5
Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity...
Saved in:
Published in: | Journal of the American Chemical Society 2013-07, Vol.135 (30), p.11087-11099 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433 |
---|---|
cites | cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433 |
container_end_page | 11099 |
container_issue | 30 |
container_start_page | 11087 |
container_title | Journal of the American Chemical Society |
container_volume | 135 |
creator | Forde, Michael M Armstrong, Robert D Hammond, Ceri He, Qian Jenkins, Robert L Kondrat, Simon A Dimitratos, Nikolaos Lopez-Sanchez, Jose Antonio Taylor, Stuart H Willock, David Kiely, Christopher J Hutchings, Graham John |
description | Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe. |
doi_str_mv | 10.1021/ja403060n |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1416695204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1416695204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</originalsourceid><addsrcrecordid>eNptkM1KAzEURoMotlYXvoBkI-hiND8zmcxShlaFSgXtxs2QJpk6ZZrUJAN25yv4ij6JKa1dubrcj8PHvQeAc4xuMCL4diFSRBFD5gD0cUZQkmHCDkEfIUSSnDPaAyfeL-KaEo6PQY9QjkieFX3w9CxcaEQLJ5-NEqGxBtoaDsO7MBoGG-P1XBsRtIdT35g5HOkECqNg2SWlNUE0ZpO-vTz9fH1np-CoFq3XZ7s5ANPR8LV8SMaT-8fybpwIynFIiK4LJrViaTFjnDKKmWCY1DknlIp6xhnCqUYZU1RiyXOspFKERVBqTlJKB-Bq27ty9qPTPlTLxkvdtvFq2_kKp5ixIppII3q9RaWz3jtdVyvXLIVbVxhVG3vV3l5kL3a13Wyp1Z780xWByy0gpK8WtnMmfvlP0S-OiXRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416695204</pqid></control><display><type>article</type><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</creator><creatorcontrib>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</creatorcontrib><description>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja403060n</identifier><identifier>PMID: 23802759</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2013-07, Vol.135 (30), p.11087-11099</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</citedby><cites>FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23802759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forde, Michael M</creatorcontrib><creatorcontrib>Armstrong, Robert D</creatorcontrib><creatorcontrib>Hammond, Ceri</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Jenkins, Robert L</creatorcontrib><creatorcontrib>Kondrat, Simon A</creatorcontrib><creatorcontrib>Dimitratos, Nikolaos</creatorcontrib><creatorcontrib>Lopez-Sanchez, Jose Antonio</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Willock, David</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Hutchings, Graham John</creatorcontrib><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEURoMotlYXvoBkI-hiND8zmcxShlaFSgXtxs2QJpk6ZZrUJAN25yv4ij6JKa1dubrcj8PHvQeAc4xuMCL4diFSRBFD5gD0cUZQkmHCDkEfIUSSnDPaAyfeL-KaEo6PQY9QjkieFX3w9CxcaEQLJ5-NEqGxBtoaDsO7MBoGG-P1XBsRtIdT35g5HOkECqNg2SWlNUE0ZpO-vTz9fH1np-CoFq3XZ7s5ANPR8LV8SMaT-8fybpwIynFIiK4LJrViaTFjnDKKmWCY1DknlIp6xhnCqUYZU1RiyXOspFKERVBqTlJKB-Bq27ty9qPTPlTLxkvdtvFq2_kKp5ixIppII3q9RaWz3jtdVyvXLIVbVxhVG3vV3l5kL3a13Wyp1Z780xWByy0gpK8WtnMmfvlP0S-OiXRA</recordid><startdate>20130731</startdate><enddate>20130731</enddate><creator>Forde, Michael M</creator><creator>Armstrong, Robert D</creator><creator>Hammond, Ceri</creator><creator>He, Qian</creator><creator>Jenkins, Robert L</creator><creator>Kondrat, Simon A</creator><creator>Dimitratos, Nikolaos</creator><creator>Lopez-Sanchez, Jose Antonio</creator><creator>Taylor, Stuart H</creator><creator>Willock, David</creator><creator>Kiely, Christopher J</creator><creator>Hutchings, Graham John</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130731</creationdate><title>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</title><author>Forde, Michael M ; Armstrong, Robert D ; Hammond, Ceri ; He, Qian ; Jenkins, Robert L ; Kondrat, Simon A ; Dimitratos, Nikolaos ; Lopez-Sanchez, Jose Antonio ; Taylor, Stuart H ; Willock, David ; Kiely, Christopher J ; Hutchings, Graham John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forde, Michael M</creatorcontrib><creatorcontrib>Armstrong, Robert D</creatorcontrib><creatorcontrib>Hammond, Ceri</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Jenkins, Robert L</creatorcontrib><creatorcontrib>Kondrat, Simon A</creatorcontrib><creatorcontrib>Dimitratos, Nikolaos</creatorcontrib><creatorcontrib>Lopez-Sanchez, Jose Antonio</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Willock, David</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Hutchings, Graham John</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forde, Michael M</au><au>Armstrong, Robert D</au><au>Hammond, Ceri</au><au>He, Qian</au><au>Jenkins, Robert L</au><au>Kondrat, Simon A</au><au>Dimitratos, Nikolaos</au><au>Lopez-Sanchez, Jose Antonio</au><au>Taylor, Stuart H</au><au>Willock, David</au><au>Kiely, Christopher J</au><au>Hutchings, Graham John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-07-31</date><risdate>2013</risdate><volume>135</volume><issue>30</issue><spage>11087</spage><epage>11099</epage><pages>11087-11099</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23802759</pmid><doi>10.1021/ja403060n</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2013-07, Vol.135 (30), p.11087-11099 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1416695204 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Oxidation%20of%20Ethane%20to%20Oxygenates%20Using%20Fe-%20and%20Cu-Containing%20ZSM%E2%80%915&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Forde,%20Michael%20M&rft.date=2013-07-31&rft.volume=135&rft.issue=30&rft.spage=11087&rft.epage=11099&rft.pages=11087-11099&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja403060n&rft_dat=%3Cproquest_cross%3E1416695204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-2ef96ced649b6836316a612f78233afb86014e056d3c1c871dcdd26363ce82433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1416695204&rft_id=info:pmid/23802759&rfr_iscdi=true |