Loading…
Effect of Surface Compositional Heterogeneities and Microphase Segregation of Fluorinated Amphiphilic Copolymers on Antifouling Performance
In this paper, a series of fluorinated amphiphilic copolymers composed of 2-perfluorooctylethyl methacrylate (FMA) and 2-hydroxyethyl methacrylate (HEMA) monomers were prepared, and their surface properties and antifouling performance were investigated. Bovine serum albumin (BSA) and human plasma fi...
Saved in:
Published in: | ACS applied materials & interfaces 2013-08, Vol.5 (16), p.7808-7818 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a series of fluorinated amphiphilic copolymers composed of 2-perfluorooctylethyl methacrylate (FMA) and 2-hydroxyethyl methacrylate (HEMA) monomers were prepared, and their surface properties and antifouling performance were investigated. Bovine serum albumin (BSA) and human plasma fibrinogen (HFg) were used as model proteins to study protein adsorption onto the fluorinated amphiphilic surfaces. All the fluorinated amphiphilic surfaces exhibit excellent resistant performance of protein adsorption measured by X-ray photoelectron spectroscopy (XPS). The surface compositional heterogeneities on the molecular scale play an important role in the antifouling properties. It was found that the copolymers exhibited better antifouling properties than the corresponding homopolymers did, when the percentage of hydrophilic hydroxyl groups is from 4% to 7% and the percentage of hydrophobic fluorinated moieties is from 4% to 14% on the surface. In addition, the protein molecular size scale and the pattern of microphase segregation domains on the surface strongly affect the protein adsorption behaviors. These results demonstrate the desirable protein-resistant performance from the fluorinated amphiphilic copolymers and provide deeper insight of the effect of surface compositional heterogeneity and microphase segregation on the protein adsorption behaviors. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am401568b |