Loading…
Discovery of a novel 5-carbonyl-1H-imidazole-4-carboxamide class of inhibitors of the HIV-1 integrase–LEDGF/p75 interaction
Though much progress has been made in the inhibition of HIV-1 integrase catalysis, clinical resistance mutations have limited the promise of long-term drug prescription. Consequently, allosteric inhibition of integrase activity has emerged as a promising approach to antiretroviral discovery and deve...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2013-10, Vol.21 (19), p.5963-5972 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Though much progress has been made in the inhibition of HIV-1 integrase catalysis, clinical resistance mutations have limited the promise of long-term drug prescription. Consequently, allosteric inhibition of integrase activity has emerged as a promising approach to antiretroviral discovery and development. Specifically, inhibitors of the interaction between HIV-1 integrase and cellular cofactor LEDGF/p75 have been validated to diminish proviral integration in cells and deliver a potent reduction in viral replicative capacity. Here, we have contributed to the development of novel allosteric integrase inhibitors with a high-throughput AlphaScreen-based random screening approach, with which we have identified novel 5-carbonyl-1H-imidazole-4-carboxamides capable of inhibiting the HIV-1 integrase–LEDGF/p75 interaction in vitro. Following a structure–activity relationship analysis of the initial 1H-imidazole-4,5-dicarbonyl core, we optimized the compound’s structure through an industrial database search, and we went further to synthesize a selective and non-cytotoxic panel of inhibitors with enhanced potency. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2013.07.047 |