Loading…
A hybrid crystal plasticity and phase transformation model for high carbon steel
Presence of retained austenite in two-phase steels can have a significant effect on the response of the material. The current state-of-the-art in multi-phase modeling of polycrystalline plasticity has limits on scaling, explicit phase modeling, and tracking multiple plasticity types. To address thes...
Saved in:
Published in: | Computational mechanics 2013-08, Vol.52 (2), p.237-255 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Presence of retained austenite in two-phase steels can have a significant effect on the response of the material. The current state-of-the-art in multi-phase modeling of polycrystalline plasticity has limits on scaling, explicit phase modeling, and tracking multiple plasticity types. To address these issues, a hybrid material model is developed for high-carbon steels. The model can account for crystal plasticity of martensite and stress-assisted transformation from austenite to martensite in dual-phase high-carbon steel. The parameters of the model are calibrated to experimental stress-strain and volumetric transformation strain data. The combination of scalability and multiple phase representation gives a useful tool for the investigation of two-phase high-carbon steel behavior. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-012-0810-y |