Loading…

Effect of bar cross-section geometry on stress distribution in overdenture-retaining system simulating horizontal misfit and bone loss

Abstract This study evaluated the influence of cross-section geometry of the bar framework on the distribution of static stresses in an overdenture-retaining bar system simulating horizontal misfit and bone loss. Three-dimensional FE models were created including two titanium implants and three cros...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2013-08, Vol.46 (12), p.2039-2044
Main Authors: Spazzin, Aloísio Oro, Costa, Ana Rosa, Correr, Américo Bortolazzo, Consani, Rafael Leonardo Xediek, Correr-Sobrinho, Lourenço, Santos, Mateus Bertolini Fernandes dos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study evaluated the influence of cross-section geometry of the bar framework on the distribution of static stresses in an overdenture-retaining bar system simulating horizontal misfit and bone loss. Three-dimensional FE models were created including two titanium implants and three cross-section geometries (circular, ovoid or Hader) of bar framework placed in the anterior part of a severely resorbed jaw. One model with 1.4-mm vertical loss of the peri-implant tissue was also created. The models set were exported to mechanical simulation software, where horizontal displacement (10, 50 or 100 μm) was applied simulating the settling of the framework, which suffered shrinkage during the laboratory procedures. The bar material used for the bar framework was a cobalt—chromium alloy. For evaluation of bone loss effect, only the 50-μm horizontal misfit was simulated. Data were qualitatively and quantitatively evaluated using von Mises stress for the mechanical part and maximum principal stress and μ-strain for peri-implant bone tissue given by the software. Stresses were concentrated along the bar and in the join between the bar and cylinder. In the peri-implant bone tissue, the μ-strain was higher in the cervical third. Higher stress levels and μ-strain were found for the models using the Hader bar. The bone loss simulated presented considerable increase on maximum principal stresses and μ-strain in the peri-implant bone tissue. In addition, for the amplification of the horizontal misfit, the higher complexity of the bar cross-section geometry and bone loss increases the levels of static stresses in the peri-implant bone tissue.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2013.05.025