Loading…
A POD reduced-order model for eigenvalue problems with application to reactor physics
SUMMARYA reduced‐order model based on proper orthogonal decomposition (POD) has been presented and applied to solving eigenvalue problems. The model is constructed via the method of snapshots, which is based upon the singular value decomposition of a matrix containing the characteristics of a soluti...
Saved in:
Published in: | International journal for numerical methods in engineering 2013-09, Vol.95 (12), p.1011-1032 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3 |
container_end_page | 1032 |
container_issue | 12 |
container_start_page | 1011 |
container_title | International journal for numerical methods in engineering |
container_volume | 95 |
creator | Buchan, A. G. Pain, C. C. Fang, F. Navon, I. M. |
description | SUMMARYA reduced‐order model based on proper orthogonal decomposition (POD) has been presented and applied to solving eigenvalue problems. The model is constructed via the method of snapshots, which is based upon the singular value decomposition of a matrix containing the characteristics of a solution as it evolves through time. Part of the novelty of this work is in how this snapshot data are generated, and this is through the recasting of eigenvalue problem, which is time independent, into a time‐dependent form. Instances of time‐dependent eigenfunction solutions are therefore used to construct the snapshot matrix. The reduced order model's capabilities in efficiently resolving eigenvalue problems that typically become computationally expensive (using standard full model discretisations) has been demonstrated. Although the approach can be adapted to most general eigenvalue problems, the examples presented here are based on calculating dominant eigenvalues in reactor physics applications. The approach is shown to reconstruct both the eigenvalues and eigenfunctions accurately using a significantly reduced number of unknowns in comparison with ‘full’ models based on finite element discretisations. The novelty of this paper therefore includes a new approach to generating snapshots, POD's application to large‐scale eigenvalue calculations, and reduced‐order model's application in reactor physics.Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4533 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439730035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439730035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3</originalsourceid><addsrcrecordid>eNp10FFr1TAUB_AwFHadwj5CQARfOk-apmkex9y9E-amsuFjSNOTLbNtatI677c3l10mCD6dh_M7fw5_Qo4ZnDCA8sM44EklOD8gKwZKFlCCfEFWeaUKoRp2SF6l9ADAmAC-Iren9Mv1RxqxWyx2RYgdRjqEDnvqQqTo73D8ZfoF6RRD2-OQ6KOf76mZpt5bM_sw0jnke2Pn7Kf7bfI2vSYvnekTvtnPI3K7Pr85uygurzefzk4vC8tVxQsngXfKQOVaLp2UbSVbZNhI4zpbo6kYyFpY0TTApWIlV6ZVzrasldVO8SPy_ik3P_dzwTTrwSeLfW9GDEvSrOJKcgAuMn37D30ISxzzd1mVTSlECfXfQBtDShGdnqIfTNxqBnrXr8796l2_mb7bB5pkTe-iGa1Pz76UtYRGsuyKJ_foe9z-N09ffT7f5-69TzP-fvYm_tC15FLo71cb_XVz8W0t-Vrf8D8z2pb3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428255206</pqid></control><display><type>article</type><title>A POD reduced-order model for eigenvalue problems with application to reactor physics</title><source>Wiley</source><creator>Buchan, A. G. ; Pain, C. C. ; Fang, F. ; Navon, I. M.</creator><creatorcontrib>Buchan, A. G. ; Pain, C. C. ; Fang, F. ; Navon, I. M.</creatorcontrib><description>SUMMARYA reduced‐order model based on proper orthogonal decomposition (POD) has been presented and applied to solving eigenvalue problems. The model is constructed via the method of snapshots, which is based upon the singular value decomposition of a matrix containing the characteristics of a solution as it evolves through time. Part of the novelty of this work is in how this snapshot data are generated, and this is through the recasting of eigenvalue problem, which is time independent, into a time‐dependent form. Instances of time‐dependent eigenfunction solutions are therefore used to construct the snapshot matrix. The reduced order model's capabilities in efficiently resolving eigenvalue problems that typically become computationally expensive (using standard full model discretisations) has been demonstrated. Although the approach can be adapted to most general eigenvalue problems, the examples presented here are based on calculating dominant eigenvalues in reactor physics applications. The approach is shown to reconstruct both the eigenvalues and eigenfunctions accurately using a significantly reduced number of unknowns in comparison with ‘full’ models based on finite element discretisations. The novelty of this paper therefore includes a new approach to generating snapshots, POD's application to large‐scale eigenvalue calculations, and reduced‐order model's application in reactor physics.Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4533</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Algebra ; Applied sciences ; Computational efficiency ; Construction ; Consumer goods ; Eigenfunctions ; eigenvalue problem ; Eigenvalues ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; POD ; reactor criticality ; Reactor physics ; reduced-order modelling ; Sciences and techniques of general use</subject><ispartof>International journal for numerical methods in engineering, 2013-09, Vol.95 (12), p.1011-1032</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3</citedby><cites>FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27670871$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchan, A. G.</creatorcontrib><creatorcontrib>Pain, C. C.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Navon, I. M.</creatorcontrib><title>A POD reduced-order model for eigenvalue problems with application to reactor physics</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYA reduced‐order model based on proper orthogonal decomposition (POD) has been presented and applied to solving eigenvalue problems. The model is constructed via the method of snapshots, which is based upon the singular value decomposition of a matrix containing the characteristics of a solution as it evolves through time. Part of the novelty of this work is in how this snapshot data are generated, and this is through the recasting of eigenvalue problem, which is time independent, into a time‐dependent form. Instances of time‐dependent eigenfunction solutions are therefore used to construct the snapshot matrix. The reduced order model's capabilities in efficiently resolving eigenvalue problems that typically become computationally expensive (using standard full model discretisations) has been demonstrated. Although the approach can be adapted to most general eigenvalue problems, the examples presented here are based on calculating dominant eigenvalues in reactor physics applications. The approach is shown to reconstruct both the eigenvalues and eigenfunctions accurately using a significantly reduced number of unknowns in comparison with ‘full’ models based on finite element discretisations. The novelty of this paper therefore includes a new approach to generating snapshots, POD's application to large‐scale eigenvalue calculations, and reduced‐order model's application in reactor physics.Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Construction</subject><subject>Consumer goods</subject><subject>Eigenfunctions</subject><subject>eigenvalue problem</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>POD</subject><subject>reactor criticality</subject><subject>Reactor physics</subject><subject>reduced-order modelling</subject><subject>Sciences and techniques of general use</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10FFr1TAUB_AwFHadwj5CQARfOk-apmkex9y9E-amsuFjSNOTLbNtatI677c3l10mCD6dh_M7fw5_Qo4ZnDCA8sM44EklOD8gKwZKFlCCfEFWeaUKoRp2SF6l9ADAmAC-Iren9Mv1RxqxWyx2RYgdRjqEDnvqQqTo73D8ZfoF6RRD2-OQ6KOf76mZpt5bM_sw0jnke2Pn7Kf7bfI2vSYvnekTvtnPI3K7Pr85uygurzefzk4vC8tVxQsngXfKQOVaLp2UbSVbZNhI4zpbo6kYyFpY0TTApWIlV6ZVzrasldVO8SPy_ik3P_dzwTTrwSeLfW9GDEvSrOJKcgAuMn37D30ISxzzd1mVTSlECfXfQBtDShGdnqIfTNxqBnrXr8796l2_mb7bB5pkTe-iGa1Pz76UtYRGsuyKJ_foe9z-N09ffT7f5-69TzP-fvYm_tC15FLo71cb_XVz8W0t-Vrf8D8z2pb3</recordid><startdate>20130921</startdate><enddate>20130921</enddate><creator>Buchan, A. G.</creator><creator>Pain, C. C.</creator><creator>Fang, F.</creator><creator>Navon, I. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130921</creationdate><title>A POD reduced-order model for eigenvalue problems with application to reactor physics</title><author>Buchan, A. G. ; Pain, C. C. ; Fang, F. ; Navon, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Construction</topic><topic>Consumer goods</topic><topic>Eigenfunctions</topic><topic>eigenvalue problem</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>POD</topic><topic>reactor criticality</topic><topic>Reactor physics</topic><topic>reduced-order modelling</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchan, A. G.</creatorcontrib><creatorcontrib>Pain, C. C.</creatorcontrib><creatorcontrib>Fang, F.</creatorcontrib><creatorcontrib>Navon, I. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchan, A. G.</au><au>Pain, C. C.</au><au>Fang, F.</au><au>Navon, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A POD reduced-order model for eigenvalue problems with application to reactor physics</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2013-09-21</date><risdate>2013</risdate><volume>95</volume><issue>12</issue><spage>1011</spage><epage>1032</epage><pages>1011-1032</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYA reduced‐order model based on proper orthogonal decomposition (POD) has been presented and applied to solving eigenvalue problems. The model is constructed via the method of snapshots, which is based upon the singular value decomposition of a matrix containing the characteristics of a solution as it evolves through time. Part of the novelty of this work is in how this snapshot data are generated, and this is through the recasting of eigenvalue problem, which is time independent, into a time‐dependent form. Instances of time‐dependent eigenfunction solutions are therefore used to construct the snapshot matrix. The reduced order model's capabilities in efficiently resolving eigenvalue problems that typically become computationally expensive (using standard full model discretisations) has been demonstrated. Although the approach can be adapted to most general eigenvalue problems, the examples presented here are based on calculating dominant eigenvalues in reactor physics applications. The approach is shown to reconstruct both the eigenvalues and eigenfunctions accurately using a significantly reduced number of unknowns in comparison with ‘full’ models based on finite element discretisations. The novelty of this paper therefore includes a new approach to generating snapshots, POD's application to large‐scale eigenvalue calculations, and reduced‐order model's application in reactor physics.Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4533</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2013-09, Vol.95 (12), p.1011-1032 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439730035 |
source | Wiley |
subjects | Algebra Applied sciences Computational efficiency Construction Consumer goods Eigenfunctions eigenvalue problem Eigenvalues Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Installations for energy generation and conversion: thermal and electrical energy Linear and multilinear algebra, matrix theory Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation POD reactor criticality Reactor physics reduced-order modelling Sciences and techniques of general use |
title | A POD reduced-order model for eigenvalue problems with application to reactor physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20POD%20reduced-order%20model%20for%20eigenvalue%20problems%20with%20application%20to%20reactor%20physics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Buchan,%20A.%20G.&rft.date=2013-09-21&rft.volume=95&rft.issue=12&rft.spage=1011&rft.epage=1032&rft.pages=1011-1032&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4533&rft_dat=%3Cproquest_cross%3E1439730035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3943-f703d9a04fb37f77b47be1e87afdc6ea410765c58803791239ab9fcb1b74e87a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428255206&rft_id=info:pmid/&rfr_iscdi=true |