Loading…

Aldosterone stimulates fibronectin synthesis in renal fibroblasts through mineralocorticoid receptor-dependent and independent mechanisms

In addition to its role in regulation of salt transport in the kidney, the mineralocorticoid hormone aldosterone plays an independent role as a mediator of kidney injury and progression of chronic kidney disease. Studies in both animal models and patients have shown that aldosterone enhances the acc...

Full description

Saved in:
Bibliographic Details
Published in:Gene 2013-11, Vol.531 (1), p.23-30
Main Authors: Chen, Dong, Chen, Zhiyong, Park, Chanyoung, Centrella, Michael, McCarthy, Thomas, Chen, Li, Al-Omari, Ahmed, Moeckel, Gilbert W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In addition to its role in regulation of salt transport in the kidney, the mineralocorticoid hormone aldosterone plays an independent role as a mediator of kidney injury and progression of chronic kidney disease. Studies in both animal models and patients have shown that aldosterone enhances the accumulation of extracellular matrix and progression of fibrosis in the kidney. However, the cellular mechanisms that lead to aldosterone-dependent fibrogenesis are poorly understood. In this study we find that aldosterone stimulates fibronectin synthesis through mineralocorticoid receptor (MCR) dependent activation of the c-Jun NH2-terminal protein kinase (JNK) and subsequent phosphorylation of the AP1 transcription factor c-jun, which forms a nuclear complex with the mineralocorticoid receptor in a kidney fibroblast cell line (NRK 49f). Furthermore, MCR-independent phosphorylation of Src family kinase induces IgF1 receptor phosphorylation, which leads to stimulation of the extracellular signal-regulated kinase (ERK1/2) to enhanced fibronectin synthesis. We further find that the IgF1-R-dependent signaling pathway activates fibronectin expression faster than the MCR-dependent pathway. We propose that the mechanisms described in this study are important to aldosterone-dependent progression of interstitial fibrosis in the kidney. Due to the duality of aldosterone-dependent activation of fibronectin synthesis in kidney fibroblasts, MCR-specific inhibitors may not entirely prevent the progression of fibrosis by aldosterone in the kidney.
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2013.08.047