Loading…

Arsenate and Chromate Retention Mechanisms on Goethite. 2. Kinetic Evaluation Using a Pressure-Jump Relaxation Technique

The kinetics of arsenate and chromate adsorption/desorption on goethite (α-FeOOH) were investigated using a pressure-jump (p-jump) relaxation technique. Information provided by this technique was used to elucidate the fate of arsenate and chromate in natural environments. Chemical relaxations result...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 1997-02, Vol.31 (2), p.321-326
Main Authors: Grossl, Paul R, Eick, Matthew, Sparks, Donald L, Goldberg, Sabine, Ainsworth, Calvin C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The kinetics of arsenate and chromate adsorption/desorption on goethite (α-FeOOH) were investigated using a pressure-jump (p-jump) relaxation technique. Information provided by this technique was used to elucidate the fate of arsenate and chromate in natural environments. Chemical relaxations resulting from rapidly induced pressure changes were monitored via conductivity detection. The adsorption/desorption of these oxyanions on goethite involved a double relaxation event. The proposed mechanism for the adsorption of arsenate and chromate on goethite is a two-step process resulting in the formation of an inner-sphere bidentate surface complex. The first step, associated with the fast τ values, involved an initial ligand exchange reaction of aqueous oxyanion species H2AsO4 - or HCrO4 - with OH ligands at the goethite surface forming an inner-sphere monodentate surface complex. The subsequent step, associated with the slow τ values, involved a second ligand exchange reaction, resulting in the formation of an inner-sphere bidentate surface complex. Overall, the results suggest that chromate may be the more mobile of the two oxyanions in soil systems.
ISSN:0013-936X
1520-5851
DOI:10.1021/es950654l