Loading…

Event-Related Functional Magnetic Resonance Images during the Perception of Phantom Limb. A Brushing Task

The phantom limb phenomenon has been used in amputee patients as a paradigm to study plasticity, mainly of the sensorimotor cortex. Nevertheless, most functional studies have been done in upper limb amputee patients using magnetoencephalography and functional magnetic resonance image imaging (fMRI)....

Full description

Saved in:
Bibliographic Details
Published in:The neuroradiology journal 2010-12, Vol.23 (6), p.665-670
Main Authors: Pasaye, E.H., Gutiérrez, R.A., Alcauter, S., Mercadillo, R.E., Aguilar-Castañeda, E., De Iturbe, M., Romero-Romo, J., Barrios, F. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phantom limb phenomenon has been used in amputee patients as a paradigm to study plasticity, mainly of the sensorimotor cortex. Nevertheless, most functional studies have been done in upper limb amputee patients using magnetoencephalography and functional magnetic resonance image imaging (fMRI). In addition, the actual experience of phantom limb sensation has not been widely used to study the neural mechanism of the human brain as a conscious knowledge of the phantom limb perception like the integration of the body image in amputee patients. fMRI studies of patients with lower limb amputation have recently been published, but none of these used an event-related design to try to observe only the stimulus application, correlating images with the subject's indication of phantom perception and discarding images with no phantom perception. In this work, we used the event-related fMRI design in two right-handed patients with identical right, transfemoral amputations, performing the same sensitive stimulation in a 3.0 T MR scanner. For comparison, we applied the same paradigm to six control subjects to compare the resulting functional maps. We found areas with statistical significance in the sensorimotor cortex contralateral to the site of stimulation, in the parietal lobe in Brodmann areas 3 in both cases (Patients and Control Subjects), but we also found activation in the Brodmann areas 6, 40, and 5 with stimulation of the stump. We observed a specific activation of the frontoparietal circuit during phantom limb perception in both amputee patients.
ISSN:1971-4009
2385-1996
DOI:10.1177/197140091002300604