Loading…
Recursive formula to compute Zernike radial polynomials
In optics, Zernike polynomials are widely used in testing, wavefront sensing, and aberration theory. This unique set of radial polynomials is orthogonal over the unit circle and finite on its boundary. This Letter presents a recursive formula to compute Zernike radial polynomials using a relationshi...
Saved in:
Published in: | Optics letters 2013-07, Vol.38 (14), p.2487-2489 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In optics, Zernike polynomials are widely used in testing, wavefront sensing, and aberration theory. This unique set of radial polynomials is orthogonal over the unit circle and finite on its boundary. This Letter presents a recursive formula to compute Zernike radial polynomials using a relationship between radial polynomials and Chebyshev polynomials of the second kind. Unlike the previous algorithms, the derived recurrence relation depends neither on the degree nor on the azimuthal order of the radial polynomials. This leads to a reduction in the computational complexity. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.38.002487 |