Loading…

Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration

In this Letter, multifocus optical-resolution photoacoustic microscopy is demonstrated using wavelength tuning and chromatic aberration for depth scanning. Discrete focal zones at several depth locations were created by refocusing light from a polarization-maintaining single-mode fiber pumped by a n...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2013-08, Vol.38 (15), p.2711-2713
Main Authors: Hajireza, Parsin, Forbrich, Alexander, Zemp, Roger J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this Letter, multifocus optical-resolution photoacoustic microscopy is demonstrated using wavelength tuning and chromatic aberration for depth scanning. Discrete focal zones at several depth locations were created by refocusing light from a polarization-maintaining single-mode fiber pumped by a nanosecond fiber laser. The fiber and laser parameters were chosen to take advantage of stimulated Raman scattering (SRS) in the fiber to create a multiwavelength output that could then be bandpass filtered. The collimator lens and objective lens are chosen to take advantage of chromatic aberration in which each generated SRS wavelength peak focuses at a slightly different depth. The maximum amplitude of photoacoustic signals is mapped to form C-scan images. Additionally, all wavelength peaks fired simultaneously offers improved depth-of-field structural imaging at the cost of slight degradation of mainlobe-to-sidelobe ratios. Wavelength-tuned depth scanning over more than 440 μm is demonstrated, significantly greater than the ~100 μm depth of field predicted from our focused Gaussian beams. The improved depth of focus could be valuable for structural imaging of microvascular morphology without the need for mechanical scanning in the depth direction.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.38.002711