Loading…
Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy
► Chemical sequential extraction and 31P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most ino...
Saved in:
Published in: | Applied geochemistry 2013-06, Vol.33, p.213-221 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ► Chemical sequential extraction and 31P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed.
Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31P nuclear magnetic resonance spectroscopy (31P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP)>moderately resistant OP (15.8%m of total OP)>moderately labile OP (11.4% of total OP)>labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r=0.586, p |
---|---|
ISSN: | 0883-2927 1872-9134 |
DOI: | 10.1016/j.apgeochem.2013.02.014 |