Loading…

Bacterial Communities of the Gorgonian Octocoral Pseudopterogorgia elisabethae

Pseudopterogorgia elisabethae is a common inhabitant of Caribbean reefs and is a well-known source of diterpenes with diverse biological activities. Notably, this octocoral is the sole source of the pseudopterosin family of anti-inflammatory diterpenes and is harvested to supply commercial demand fo...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2013-11, Vol.66 (4), p.972-985
Main Authors: Correa, Hebelin, Haltli, Brad, Duque, Carmenza, Kerr, Russell
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pseudopterogorgia elisabethae is a common inhabitant of Caribbean reefs and is a well-known source of diterpenes with diverse biological activities. Notably, this octocoral is the sole source of the pseudopterosin family of anti-inflammatory diterpenes and is harvested to supply commercial demand for these metabolites. We have characterized the composition of the bacterial community associated with P. elisabethae collected from Providencia Island, Colombia, using both culture-dependent and culture-independent approaches. Culture-independent analysis revealed that the bacterial communities were composed of eight phyla, of which Proteobacteria was the most abundant. At the class level, bacterial communities were dominated by Gammaproteobacteria (82—87 %). Additionally, operational taxonomic units related to Pseudomonas and Endozoicomonas species were the most abundant phylotypes consistently associated with P. elisabethae colonies. Culture-dependent analysis resulted in the identification of 40 distinct bacteria classified as Bacilli (15), Actinobacteria (12), Gammaproteobacteria (9), Alphaproteobacteria (3), and Betaproteobacteria (1). Only one of the 40 cultured bacteria was closely related to a dominant phylotype detected in the culture-independent study, suggesting that conventional culturing techniques failed to culture the majority of octocoral-associated bacterial diversity. To the best of our knowledge, this is the first characterization of the bacterial diversity associated with P. elisabethae.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-013-0267-3