Loading…

Effects of the interplay between initial state and Hamiltonian on the thermalization of isolated quantum many-body systems

We explore the role of the initial state on the onset of thermalization in isolated quantum many-body systems after a quench. The initial state is an eigenstate of an initial Hamiltonian H(I) and it evolves according to a different final Hamiltonian H(F). If the initial state has a chaotic structure...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-10, Vol.88 (4), p.042121-042121, Article 042121
Main Authors: Torres-Herrera, E J, Santos, Lea F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore the role of the initial state on the onset of thermalization in isolated quantum many-body systems after a quench. The initial state is an eigenstate of an initial Hamiltonian H(I) and it evolves according to a different final Hamiltonian H(F). If the initial state has a chaotic structure with respect to H(F), i.e., if it fills the energy shell ergodically, thermalization is certain to occur. This happens when H(I) is a full random matrix, because its states projected onto H(F), are fully delocalized. The results for the observables then agree with those obtained with thermal states at infinite temperature. However, finite real systems with few-body interactions, as the ones considered here, are deprived of fully extended eigenstates, even when described by a nonintegrable Hamiltonian. We examine how the initial state delocalizes as it gets closer to the middle of the spectrum of H(F), causing the observables to approach thermal averages, be the models integrable or chaotic. Our numerical studies are based on initial states with energies that cover the entire lower half of the spectrum of one-dimensional Heisenberg spin-1/2 systems.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.88.042121