Loading…

Deciphering the Stigmatic Transcriptional Landscape of Compatible and Self-Incompatible Pollinations in Brassica napus Reveals a Rapid Stigma Senescence Response Following Compatible Pollination

Dear Editor, Self-incompatibility (SI) is a genetic mechanism through which flowering plants prevent self-pollination to ensure out- crossing and genetic diversity. In Brassica sp., this mechanism is controlled by the self-incompatibility (S) locus, in which, the stigmatic 'S-locus receptor kinase (...

Full description

Saved in:
Bibliographic Details
Published in:Molecular plant 2013-11, Vol.6 (6), p.1988-1991
Main Authors: Sankaranarayanan, Subramanian, Jamshed, Muhammad, Deb, Srijani, Chatfield-Reed, Kate, Kwon, Eun-Joo Gina, Chua, Gordon, Samuel, Marcus A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dear Editor, Self-incompatibility (SI) is a genetic mechanism through which flowering plants prevent self-pollination to ensure out- crossing and genetic diversity. In Brassica sp., this mechanism is controlled by the self-incompatibility (S) locus, in which, the stigmatic 'S-locus receptor kinase (SRK)' recognizes the 'S-locus cysteine rich protein (SCR)' from the self-pollen to elicit an active rejection response. This results in blocking of compatibil- ity factors from being delivered to the site of pollen attachment leading to self-pollen rejection (Chapman and Goring, 2010). In contrast, following recognition of compatible signals from the cross-pollen or compatible pollen (CP), the stigma releases its resources such as water and nutrients to the dry pollen so that the pollen tube can germinate and penetrate the stigmatic cuticle leading to successful fertilization. Thus, an incompatible or self-pollen is fully capable of eliciting a compatible response, but is actively rejected before compatible responses can occur.
ISSN:1674-2052
1752-9867
DOI:10.1093/mp/sst066