Loading…

Intracolonial genetic diversity increases chemical signaling by waggle-dancing honey bees, Apis mellifera

Extreme polyandry is a derived mating strategy that is uncommon in the Hymenoptera, but occurs in ecologically dominant taxa such as honey bees, leaf-cutter ants, and army ants. Honey bee queens that mate with many males confer a selective advantage to their colonies in part by generating geneticall...

Full description

Saved in:
Bibliographic Details
Published in:Insectes sociaux 2013, Vol.60 (4), p.485-496
Main Authors: Carr-Markell, M. K, McDonald, K. M, Mattila, H. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extreme polyandry is a derived mating strategy that is uncommon in the Hymenoptera, but occurs in ecologically dominant taxa such as honey bees, leaf-cutter ants, and army ants. Honey bee queens that mate with many males confer a selective advantage to their colonies in part by generating genetically diverse foraging workforces that are more active than those of colonies with singly mated queens. These foragers produce more waggle-dance signals, each circuit of which attracts larger audiences of dance followers. We investigated the role that dancer-produced volatiles (“waggle-dance compounds”) play in facilitating signal exchange when mating frequency, and thus patriline number, differs. We found a 6- to 200-fold increase in quantities of three of four waggle-dance compounds in the airspace of multiple-patriline versus single-patriline colonies. Possible worker-level mechanisms underlying this difference were investigated by sampling compounds from dancers over similar intervals at the start of dances. The best-supported explanation was the presence of greater quantities of compounds on the abdomens of foragers as dance length increased rather than differences in quantities sampled between colony types or among patrilines. Workers who danced more frequently attracted more followers to the initial circuits of their first dance, but following response was not linked to quantities of compounds on dancers. While honey bee colonies with multiple patrilines have greater quantities of dancer-produced volatiles in them, high concentrations of these chemicals probably do not attract more dance followers to specific dancers. Thus, the role that these compounds may play in enhancing colony productivity requires clarification.
ISSN:0020-1812
1420-9098
DOI:10.1007/s00040-013-0315-5