Loading…
Spectral properties of the Dirichlet operator $\sum _{i=1}d}(-\partial _i arrow up )s}$?i=1d( partial differential i2)s on domains in d-dimensional Euclidean space
In this article, we investigate the distribution of eigenvalues of the Dirichlet pseudo-differential operator \documentclass[12pt]{minimal}\begin{document}$\sum _{i=1}d}(-\partial _i arrow up )s}, \, s\in (0,1]$\end{document} capital sigma i=1d(- partial differential i2)s,s eta (0,1 ] on an open and...
Saved in:
Published in: | Journal of mathematical physics 2013-01, Vol.54 (10) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we investigate the distribution of eigenvalues of the Dirichlet pseudo-differential operator \documentclass[12pt]{minimal}\begin{document}$\sum _{i=1}d}(-\partial _i arrow up )s}, \, s\in (0,1]$\end{document} capital sigma i=1d(- partial differential i2)s,s eta (0,1 ] on an open and bounded subdomain \documentclass[12pt]{minimal}\begin{document}$\Omega \subset \mathbb {R} delta $\end{document} Omega sub(Rd and predict bounds on the sum of the first N eigenvalues, the counting function, the Riesz means, and the trace of the heat kernel. Moreover, utilizing the connection of coherent states to the semi-classical approach of quantum mechanics, we determine the sum for moments of eigenvalues of the associated Schrodinger operator.) |
---|---|
ISSN: | 0022-2488 |
DOI: | 10.1063/1.4823481 |