Loading…

Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers

Spin–orbit interaction-driven phenomena such as the spin Hall and Rashba effect in ferromagnetic/heavy metal bilayers enables efficient manipulation of the magnetization via electric current. However, the underlying mechanism for the spin–orbit interaction-driven phenomena remains unsettled. Here we...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2014-01, Vol.5 (1), p.3042-3042, Article 3042
Main Authors: Fan, Xin, Celik, Halise, Wu, Jun, Ni, Chaoying, Lee, Kyung-Jin, Lorenz, Virginia O., Xiao, John Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spin–orbit interaction-driven phenomena such as the spin Hall and Rashba effect in ferromagnetic/heavy metal bilayers enables efficient manipulation of the magnetization via electric current. However, the underlying mechanism for the spin–orbit interaction-driven phenomena remains unsettled. Here we develop a sensitive spin–orbit torque magnetometer based on the magneto-optic Kerr effect that measures the spin–orbit torque vectors for cobalt iron boron/platinum bilayers over a wide thickness range. We observe that the Slonczewski-like torque inversely scales with the ferromagnet thickness, and the field-like torque has a threshold effect that appears only when the ferromagnetic layer is thinner than 1 nm. Through a thickness-dependence study with an additional copper insertion layer at the interface, we conclude that the dominant mechanism for the spin–orbit interaction-driven phenomena in this system is the spin Hall effect. However, there is also a distinct interface contribution, which may be because of the Rashba effect. Spin–orbit-driven effects are of great interest for spintronic applications but the underlying mechanisms are challenging to probe. Here, the authors develop a sensitive spin–orbit torque magnetometer to quantify the interface and bulk contributions to the spin–orbit torques in magnetic bilayers.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4042