Loading…
Reducing the number of animals used for microsurgery training programs by using a task-trainer simulator
To master the skills needed for microsurgery techniques, residents must enrol in a long and complex training program that includes manipulations on simulators, on ex vivo tissues and finally in vivo training. This final step consists of performing vascular anastomoses on murine models. We propose he...
Saved in:
Published in: | Laboratory animals (London) 2014-01, Vol.48 (1), p.72-77 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To master the skills needed for microsurgery techniques, residents must enrol in a long and complex training program that includes manipulations on simulators, on ex vivo tissues and finally in vivo training. This final step consists of performing vascular anastomoses on murine models. We propose here a simulation program designed to decrease the number of rats used during the final in vivo training. Our study presents the materials used, the various exercises proposed and their evaluations. Two identical student groups were compared in the framework of the University Diploma of Microsurgery. Group A (seven students) followed a classic training program, all of whom achieved permeable vascular anastomoses. A total of 149 rats were needed for this group. Group B (seven students) first validated their manipulations on the task-trainer simulation program. A mean of 6 h was necessary to obtain this validation. All these students achieved the required permeable vascular anastomoses but only 77 rats were used for this group. This simulation program spared 72 rats, abiding by the Russell and Burch concept of a humane experimental technique, namely the 3R principles. This home-made, cost-efficient and easy-to-use task trainer included various exercises with increasing difficulty levels and a progressive scoring system. We believe that microsurgery training needs to include both simple and sophisticated tools in order to reduce the number of animals used to master these surgical skills. |
---|---|
ISSN: | 0023-6772 1758-1117 |
DOI: | 10.1177/0023677213514045 |