Loading…

Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae

Microalgal biofuel alternatives have been hindered by their cost and energy intensive production. In the microalgal harvesting process, the intermediate step of flocculation shows potential in drastically reducing the need for costly centrifugation processes. Moringa oleifera seeds, which have been...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied phycology 2012-06, Vol.24 (3), p.557-563
Main Authors: Teixeira, Cláudia Maria Luz Lapa, Kirsten, Fabiana Vasconcelos, Teixeira, Pedro Celso Nogueira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microalgal biofuel alternatives have been hindered by their cost and energy intensive production. In the microalgal harvesting process, the intermediate step of flocculation shows potential in drastically reducing the need for costly centrifugation processes. Moringa oleifera seeds, which have been used for water treatment due to their high flocculation potential, low cost and low toxicity, are presented in this paper as strong candidate for flocculating Chlorella vulgaris, a microalgae with high biodiesel production potential. Early results of our group showed a very high flocculation (around 85% of biomass recovery). The aim of this work was to investigate the influence of Moringa oleifera seed flour concentration, sedimentation time and pH on the flocculation efficiency. Cell suspensions treated with Moringa seed flour (1 g L-1) had their flocculation significantly increased with the rise of pH, reaching 89% of flocculation in 120 min at pH 9.2. Sedimentation time of 120 min and a concentration of 0.6 g L-1 proved to be ample for substantial flocculation efficiency. In spite of the need for more research to ensure the economic viability and sustainability of this process, these results corroborate Moringa oleifera seeds as a strong candidate as a bioflocculant for Chlorella vulgaris cells and indicate optimal pH range of its action.
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-011-9773-1