Loading…
The atomic origin of high catalytic activity of ZnO nanotetrapods for decomposition of ammonium perchlorate
Distinct from the common well faceted ZnO nanorods (R-ZnO), ZnO nanotetrapods (T-ZnO) exhibited a remarkable catalytic activity for the thermal decomposition of ammonium perchlorate (AP): the activation energy at high temperature decomposition (HTD) was significantly decreased to 111.9 kJ mol super(...
Saved in:
Published in: | CrystEngComm 2014-01, Vol.16 (4), p.570-574 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distinct from the common well faceted ZnO nanorods (R-ZnO), ZnO nanotetrapods (T-ZnO) exhibited a remarkable catalytic activity for the thermal decomposition of ammonium perchlorate (AP): the activation energy at high temperature decomposition (HTD) was significantly decreased to 111.9 kJ mol super(-1), much lower than 162.5 kJ mol super(-1) for pure AP and 156.9 kJ mol super(-1) for AP with R-ZnO. This was attributed to more abundant atomic steps on the surface of T-ZnO than that of R-ZnO, as evidenced by HRTEM and density function theory (DFT) calculations. It was shown that the initiation step of perchloric acid (PA) decomposition happened much faster on stepped T-ZnO edges, resulting in the formation of active oxygen atoms from HClO sub(4). The formed oxygen atoms would subsequently react with NH sub(3) to produce HNO, N sub(2)O and NO species, thus leading to an obvious decrease in the activation energy of AP decomposition. The proposed catalytic mechanism was further corroborated by the TG-IR spectroscopy results. Our work can provide atomic insights into the catalytic decomposition of AP on ZnO nanostructures. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/C3CE41435C |