Loading…

Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients

This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional diffusion problems with variable coefficients. The methods use either a s...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2012-10, Vol.64 (8), p.2695-2711
Main Authors: AL-Jawary, M.A., Ravnik, J., Wrobel, L.C., Škerget, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional diffusion problems with variable coefficients. The methods use either a specially constructed parametrix (Levi function) or the standard fundamental solution for the Laplace equation to reduce the boundary-value problem (BVP) to a boundary–domain integral equation (BDIE) or boundary–domain integro-differential equation (BDIDE). The radial integration method (RIM) is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Furthermore, a subdomain decomposition technique (SDBDIE) is proposed, which leads to a sparse system of linear equations, thus avoiding the need to calculate a large number of domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed approaches.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2012.08.002