Loading…
Time-integration methods for finite element discretisations of the second-order Maxwell equation
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis function...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2013-02, Vol.65 (3), p.528-543 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis functions are used up to polynomial order p=3 over tetrahedral meshes, meaning fourth-order convergence rate. A high-order polynomial basis often warrants the use of high-order time-integration schemes, but many well-known high-order schemes may suffer from a severe time-step stability restriction owing to the conductivity term. We investigate several possible time-integration methods from the point of view of accuracy, stability and computational work. We also carry out a numerical Fourier analysis to study the dispersion and dissipation properties of the semi-discrete DG-FEM scheme as well as the fully-discrete schemes with several of the time-integration methods. The dispersion and dissipation properties of the spatial discretisation and those of the time-integration methods are investigated separately, providing additional insight into the two discretisation steps. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2012.05.023 |