Loading…

Time-integration methods for finite element discretisations of the second-order Maxwell equation

This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis function...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2013-02, Vol.65 (3), p.528-543
Main Authors: Sármány, D., Botchev, M.A., van der Vegt, J.J.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis functions are used up to polynomial order p=3 over tetrahedral meshes, meaning fourth-order convergence rate. A high-order polynomial basis often warrants the use of high-order time-integration schemes, but many well-known high-order schemes may suffer from a severe time-step stability restriction owing to the conductivity term. We investigate several possible time-integration methods from the point of view of accuracy, stability and computational work. We also carry out a numerical Fourier analysis to study the dispersion and dissipation properties of the semi-discrete DG-FEM scheme as well as the fully-discrete schemes with several of the time-integration methods. The dispersion and dissipation properties of the spatial discretisation and those of the time-integration methods are investigated separately, providing additional insight into the two discretisation steps.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2012.05.023