Loading…
cDNA Cloning of Human Liver Monoamine Oxidase A and B: Molecular Basis of Differences in Enzymatic Properties
The monoamine oxidases play a vital role in the metabolism of biogenic amines in the central nervous system and in peripheral tissues. Using oligonucleotide probes derived from three sequenced peptide fragments, we have isolated cDNA clones that encode the A and B forms of monoamine oxidase and have...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1988-07, Vol.85 (13), p.4934-4938 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The monoamine oxidases play a vital role in the metabolism of biogenic amines in the central nervous system and in peripheral tissues. Using oligonucleotide probes derived from three sequenced peptide fragments, we have isolated cDNA clones that encode the A and B forms of monoamine oxidase and have determined the nucleotide sequences of these cDNAs. Comparison of the deduced amino acid sequences shows that the A and B forms have subunit molecular weights of 59,700 and 58,800, respectively, and have 70% sequence identity. Both sequences contain the pentapeptide Ser-Gly-Gly-Cys-Tyr, in which the obligatory cofactor FAD is covalently bound to cysteine. Based on differences in primary amino acid sequences and RNA gel blot analysis of mRNAs, the A and B forms of monoamine oxidase appear to be derived from separate genes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.85.13.4934 |