Loading…

Structural insights into the catalytic mechanism of human squalene synthase

Squalene synthase (SQS) is a divalent metal‐ion‐dependent enzyme that catalyzes the two‐step reductive `head‐to‐head' condensation of two molecules of farnesyl pyrophosphate to form squalene using presqualene diphosphate (PSPP) as an intermediate. In this paper, the structures of human SQS and...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2014-02, Vol.70 (2), p.231-241
Main Authors: Liu, Chia-I, Jeng, Wen-Yih, Chang, Wei-Jung, Shih, Min-Fang, Ko, Tzu-Ping, Wang, Andrew H.-J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Squalene synthase (SQS) is a divalent metal‐ion‐dependent enzyme that catalyzes the two‐step reductive `head‐to‐head' condensation of two molecules of farnesyl pyrophosphate to form squalene using presqualene diphosphate (PSPP) as an intermediate. In this paper, the structures of human SQS and its mutants in complex with several substrate analogues and intermediates coordinated with Mg2+ or Mn2+ are presented, which stepwise delineate the biosynthetic pathway. Extensive study of the SQS active site has identified several critical residues that are involved in binding reduced nicotinamide dinucleotide phosphate (NADPH). Based on mutagenesis data and a locally closed (JK loop‐in) structure observed in the hSQS‐(F288L)–PSPP complex, an NADPH‐binding model is proposed for SQS. The results identified four major steps (substrate binding, condensation, intermediate formation and translocation) of the ordered sequential mechanisms involved in the `1′–1' isoprenoid biosynthetic pathway. These new findings clarify previous hypotheses based on site‐directed mutagenesis and biochemical analysis.
ISSN:1399-0047
0907-4449
1399-0047
DOI:10.1107/S1399004713026230