Loading…

Decationized crosslinked polyplexes for redox-triggered gene delivery

The clinical applicability of polymers as gene delivery systems depends not only on their efficiency, but also on their safety. The cytotoxicity of these systems remains a major issue, mainly due to their cationic nature. Therefore, it is highly preferable to have a system based on biocompatible neu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2013-08, Vol.169 (3), p.246-256
Main Authors: Novo, Luís, van Gaal, Ethlinn V.B., Mastrobattista, Enrico, van Nostrum, Cornelus F., Hennink, Wim E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The clinical applicability of polymers as gene delivery systems depends not only on their efficiency, but also on their safety. The cytotoxicity of these systems remains a major issue, mainly due to their cationic nature. Therefore, it is highly preferable to have a system based on biocompatible neutral polymers, lacking polycations, without compromising the DNA condensing and protecting capacities. Here, we introduce a concept to obtain a neutral polymeric gene delivery system, through a 3-step process (charge-driven condensation; stabilization through disulfide crosslinking; polyplex decationization) to generate polyplexes with a core of disulfide crosslinked poly(hydroxypropyl methacrylamide) (pHPMA) in which plasmid DNA (pDNA) is entrapped and a shell of poly(ethylene glycol) (PEG). The resulting polyplexes combine beneficial features of high and stable DNA loading capacity, stealth behavior and reduced toxicity. The nanoparticles are designed to release the pDNA after cellular uptake through cleavage of disulfide crosslinks within the intracellular reducing environment. This was shown by forced introduction of the polyplexes into the cytosol of HeLa cells by electroporation, which resulted in a high level of expression of the reporter gene. Additionally, the decationized polyplexes showed no interference on the cellular cell viability or metabolic activity (even at high dose) and no complex-induced membrane destabilization. Furthermore, decationized polyplexes showed a low degree of non-specific uptake, which is a highly favorable property for targeted therapy. Summarizing, the stabilized, decationized polyplexes presented here contribute to solve the high toxicity, low stability and lack of cellular/tissue specificity of cationic polymer based gene delivery systems. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2013.03.035