Loading…

Fuzzy rough sets, and a granular neural network for unsupervised feature selection

A granular neural network for identifying salient features of data, based on the concepts of fuzzy set and a newly defined fuzzy rough set, is proposed. The formation of the network mainly involves an input vector, initial connection weights and a target value. Each feature of the data is normalized...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2013-12, Vol.48, p.91-108
Main Authors: Ganivada, Avatharam, Ray, Shubhra Sankar, Pal, Sankar K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A granular neural network for identifying salient features of data, based on the concepts of fuzzy set and a newly defined fuzzy rough set, is proposed. The formation of the network mainly involves an input vector, initial connection weights and a target value. Each feature of the data is normalized between 0 and 1 and used to develop granulation structures by a user defined α-value. The input vector and the target value of the network are defined using granulation structures, based on the concept of fuzzy sets. The same granulation structures are also presented to a decision system. The decision system helps in extracting the domain knowledge about data in the form of dependency factors, using the notion of new fuzzy rough set. These dependency factors are assigned as the initial connection weights of the proposed network. It is then trained using minimization of a novel feature evaluation index in an unsupervised manner. The effectiveness of the proposed network, in evaluating selected features, is demonstrated on several real-life datasets. The results of FRGNN are found to be statistically more significant than related methods in 28 instances of 40 instances, i.e., 70% of instances, using the paired t-test.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2013.07.008