Loading…

Exact pattern matching with feed-forward bloom filters

This article presents a new, memory efficient and cache-optimized algorithm for simultaneously searching for a large number of patterns in a very large corpus. This algorithm builds upon the Rabin-Karp string search algorithm and incorporates a new type of Bloom filter that we call a feed-forward Bl...

Full description

Saved in:
Bibliographic Details
Published in:The ACM journal of experimental algorithmics 2012-07, Vol.17, p.3.1-3.18
Main Authors: Moraru, Iulian, Andersen, David G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a new, memory efficient and cache-optimized algorithm for simultaneously searching for a large number of patterns in a very large corpus. This algorithm builds upon the Rabin-Karp string search algorithm and incorporates a new type of Bloom filter that we call a feed-forward Bloom filter . While it retains the asymptotic time complexity of previous multiple pattern matching algorithms, we show that this technique, along with a CPU architecture-aware design of the Bloom filter, can provide speed-ups between 2× and 30×, and memory consumption reductions as large as 50× when compared with grep. Our algorithm is also well suited for implementations on GPUs: A modern GPU can search for 3 million patterns at a rate of 580MB/s, and for 100 million patterns (a prohibitive number for traditional algorithms) at a rate of 170MB/s.
ISSN:1084-6654
1084-6654
DOI:10.1145/2133803.2330085