Loading…
Detecting interaction above digital tabletops using a single depth camera
Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First ap...
Saved in:
Published in: | Machine vision and applications 2013-11, Vol.24 (8), p.1575-1587 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973 |
container_end_page | 1587 |
container_issue | 8 |
container_start_page | 1575 |
container_title | Machine vision and applications |
container_volume | 24 |
creator | Haubner, Nadia Schwanecke, Ulrich Dörner, Ralf Lehmann, Simon Luderschmidt, Johannes |
description | Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First approaches aim at involving the space above the surface, e.g., by employing freehand gestures. However, these are either limited to specific scenarios or employ obtrusive tracking solutions. In this paper, we propose an approach to unobtrusively segment and detect interaction above a digital surface using a depth sensing camera. To achieve this, we adapt a previously presented approach that segments arms in depth data from a front-view to a top-view setup facilitating the detection of hand positions. Moreover, we propose a novel algorithm to merge segments and give a comparison to the original segmentation algorithm. Since the algorithm involves a large number of parameters, estimating the optimal configuration is necessary. To accomplish this, we describe a low effort approach to estimate the parameter configuration based on simulated annealing. An evaluation of our system to detect hands shows that a repositioning precision of approximately 1 cm is achieved. This accuracy is sufficient to reliably realize interaction metaphors above a surface. |
doi_str_mv | 10.1007/s00138-013-0538-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506381739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262656221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFEdxUb97NUsbXwIAbXYc0TccOnbYmqeC_N6WiILi595B853I4CJ1juMYA8iYAYFrkaeTAk-AHaIEZJTmWQh2iBaikC1DkGJ2EsAMAJiVboPWdi87GpttmTRedN0n3XWbK_sNlVbNtommzaMrWxX4I2Rgm0mTTahPghviWWbNPxlN0VJs2uLPvvUSvD_cvq6d88_y4Xt1uckulirktjKhLQ6iqhBQgraBKOSatrIkqlKxYyVWV3hRgBmVhmADL6kJYiVWtJF2iq_nu4Pv30YWo902wrm1N5_oxaMxB0AJLqhJ68Qfd9aPvUjpNiCCCC0JwovBMWd-H4F2tB9_sjf_UGPRUrp7L1WnoqVzNk-fy-7IJ1rS1N51two-RyAI4l1NYMnMhfXVb538T_H_8C4Rbh6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262656221</pqid></control><display><type>article</type><title>Detecting interaction above digital tabletops using a single depth camera</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Haubner, Nadia ; Schwanecke, Ulrich ; Dörner, Ralf ; Lehmann, Simon ; Luderschmidt, Johannes</creator><creatorcontrib>Haubner, Nadia ; Schwanecke, Ulrich ; Dörner, Ralf ; Lehmann, Simon ; Luderschmidt, Johannes</creatorcontrib><description>Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First approaches aim at involving the space above the surface, e.g., by employing freehand gestures. However, these are either limited to specific scenarios or employ obtrusive tracking solutions. In this paper, we propose an approach to unobtrusively segment and detect interaction above a digital surface using a depth sensing camera. To achieve this, we adapt a previously presented approach that segments arms in depth data from a front-view to a top-view setup facilitating the detection of hand positions. Moreover, we propose a novel algorithm to merge segments and give a comparison to the original segmentation algorithm. Since the algorithm involves a large number of parameters, estimating the optimal configuration is necessary. To accomplish this, we describe a low effort approach to estimate the parameter configuration based on simulated annealing. An evaluation of our system to detect hands shows that a repositioning precision of approximately 1 cm is achieved. This accuracy is sufficient to reliably realize interaction metaphors above a surface.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-013-0538-5</identifier><identifier>CODEN: MVAPEO</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Cameras ; Communications Engineering ; Computer Science ; Computer science; control theory; systems ; Computer simulation ; Computer systems and distributed systems. User interface ; Configurations ; Exact sciences and technology ; Image Processing and Computer Vision ; Metaphor ; Networks ; Original Paper ; Parameter estimation ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Segments ; Simulated annealing ; Software ; Vision systems</subject><ispartof>Machine vision and applications, 2013-11, Vol.24 (8), p.1575-1587</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Machine Vision and Applications is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973</citedby><cites>FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27805577$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haubner, Nadia</creatorcontrib><creatorcontrib>Schwanecke, Ulrich</creatorcontrib><creatorcontrib>Dörner, Ralf</creatorcontrib><creatorcontrib>Lehmann, Simon</creatorcontrib><creatorcontrib>Luderschmidt, Johannes</creatorcontrib><title>Detecting interaction above digital tabletops using a single depth camera</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First approaches aim at involving the space above the surface, e.g., by employing freehand gestures. However, these are either limited to specific scenarios or employ obtrusive tracking solutions. In this paper, we propose an approach to unobtrusively segment and detect interaction above a digital surface using a depth sensing camera. To achieve this, we adapt a previously presented approach that segments arms in depth data from a front-view to a top-view setup facilitating the detection of hand positions. Moreover, we propose a novel algorithm to merge segments and give a comparison to the original segmentation algorithm. Since the algorithm involves a large number of parameters, estimating the optimal configuration is necessary. To accomplish this, we describe a low effort approach to estimate the parameter configuration based on simulated annealing. An evaluation of our system to detect hands shows that a repositioning precision of approximately 1 cm is achieved. This accuracy is sufficient to reliably realize interaction metaphors above a surface.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Configurations</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Metaphor</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Simulated annealing</subject><subject>Software</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcFEdxUb97NUsbXwIAbXYc0TccOnbYmqeC_N6WiILi595B853I4CJ1juMYA8iYAYFrkaeTAk-AHaIEZJTmWQh2iBaikC1DkGJ2EsAMAJiVboPWdi87GpttmTRedN0n3XWbK_sNlVbNtommzaMrWxX4I2Rgm0mTTahPghviWWbNPxlN0VJs2uLPvvUSvD_cvq6d88_y4Xt1uckulirktjKhLQ6iqhBQgraBKOSatrIkqlKxYyVWV3hRgBmVhmADL6kJYiVWtJF2iq_nu4Pv30YWo902wrm1N5_oxaMxB0AJLqhJ68Qfd9aPvUjpNiCCCC0JwovBMWd-H4F2tB9_sjf_UGPRUrp7L1WnoqVzNk-fy-7IJ1rS1N51two-RyAI4l1NYMnMhfXVb538T_H_8C4Rbh6A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Haubner, Nadia</creator><creator>Schwanecke, Ulrich</creator><creator>Dörner, Ralf</creator><creator>Lehmann, Simon</creator><creator>Luderschmidt, Johannes</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Detecting interaction above digital tabletops using a single depth camera</title><author>Haubner, Nadia ; Schwanecke, Ulrich ; Dörner, Ralf ; Lehmann, Simon ; Luderschmidt, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Configurations</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Metaphor</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Simulated annealing</topic><topic>Software</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haubner, Nadia</creatorcontrib><creatorcontrib>Schwanecke, Ulrich</creatorcontrib><creatorcontrib>Dörner, Ralf</creatorcontrib><creatorcontrib>Lehmann, Simon</creatorcontrib><creatorcontrib>Luderschmidt, Johannes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haubner, Nadia</au><au>Schwanecke, Ulrich</au><au>Dörner, Ralf</au><au>Lehmann, Simon</au><au>Luderschmidt, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting interaction above digital tabletops using a single depth camera</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>24</volume><issue>8</issue><spage>1575</spage><epage>1587</epage><pages>1575-1587</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><coden>MVAPEO</coden><abstract>Digital tabletop environments offer a huge potential to realize application scenarios where multiple users interact simultaneously or aim to solve collaborative tasks. So far, research in this field focuses on touch and tangible interaction, which only takes place on the tabletop’s surface. First approaches aim at involving the space above the surface, e.g., by employing freehand gestures. However, these are either limited to specific scenarios or employ obtrusive tracking solutions. In this paper, we propose an approach to unobtrusively segment and detect interaction above a digital surface using a depth sensing camera. To achieve this, we adapt a previously presented approach that segments arms in depth data from a front-view to a top-view setup facilitating the detection of hand positions. Moreover, we propose a novel algorithm to merge segments and give a comparison to the original segmentation algorithm. Since the algorithm involves a large number of parameters, estimating the optimal configuration is necessary. To accomplish this, we describe a low effort approach to estimate the parameter configuration based on simulated annealing. An evaluation of our system to detect hands shows that a repositioning precision of approximately 1 cm is achieved. This accuracy is sufficient to reliably realize interaction metaphors above a surface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-013-0538-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2013-11, Vol.24 (8), p.1575-1587 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506381739 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Applied sciences Artificial intelligence Cameras Communications Engineering Computer Science Computer science control theory systems Computer simulation Computer systems and distributed systems. User interface Configurations Exact sciences and technology Image Processing and Computer Vision Metaphor Networks Original Paper Parameter estimation Pattern Recognition Pattern recognition. Digital image processing. Computational geometry Segmentation Segments Simulated annealing Software Vision systems |
title | Detecting interaction above digital tabletops using a single depth camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20interaction%20above%20digital%20tabletops%20using%20a%20single%20depth%20camera&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Haubner,%20Nadia&rft.date=2013-11-01&rft.volume=24&rft.issue=8&rft.spage=1575&rft.epage=1587&rft.pages=1575-1587&rft.issn=0932-8092&rft.eissn=1432-1769&rft.coden=MVAPEO&rft_id=info:doi/10.1007/s00138-013-0538-5&rft_dat=%3Cproquest_cross%3E2262656221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c8a6fba239d67607c6399e47c7f29897d4b59d39990140b8a460c4f86c719f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262656221&rft_id=info:pmid/&rfr_iscdi=true |