Loading…
GMDH-based networks for intelligent intrusion detection
Network intrusion detection has been an area of rapid advancement in recent times. Similar advances in the field of intelligent computing have led to the introduction of several classification techniques for accurately identifying and differentiating network traffic into normal and anomalous. Group...
Saved in:
Published in: | Engineering applications of artificial intelligence 2013-08, Vol.26 (7), p.1731-1740 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Network intrusion detection has been an area of rapid advancement in recent times. Similar advances in the field of intelligent computing have led to the introduction of several classification techniques for accurately identifying and differentiating network traffic into normal and anomalous. Group Method for Data Handling (GMDH) is one such supervised inductive learning approach for the synthesis of neural network models. Through this paper, we propose a GMDH-based technique for classifying network traffic into normal and anomalous. Two variants of the technique, namely, Monolithic and Ensemble-based, were tested on the KDD-99 dataset. The dataset was preprocessed and all features were ranked based on three feature ranking techniques, namely, Information Gain, Gain Ratio, and GMDH by itself. The results obtained proved that the proposed intrusion detection scheme yields high attack detection rates, nearly 98%, when compared with other intelligent classification techniques for network intrusion detection. |
---|---|
ISSN: | 0952-1976 1873-6769 |
DOI: | 10.1016/j.engappai.2013.03.008 |