Loading…

Bounds on the deviation of discrete-time Markov chains from their mean-field model

We consider a generic mean-field scenario, in which a sequence of population models, described by discrete-time Markov chains (DTMCs), converges to a deterministic limit in discrete time. Under the assumption that the limit has a globally attracting equilibrium, the steady states of the sequence of...

Full description

Saved in:
Bibliographic Details
Published in:Performance evaluation 2013-10, Vol.70 (10), p.736-749
Main Authors: Bortolussi, Luca, Hayden, Richard A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a generic mean-field scenario, in which a sequence of population models, described by discrete-time Markov chains (DTMCs), converges to a deterministic limit in discrete time. Under the assumption that the limit has a globally attracting equilibrium, the steady states of the sequence of DTMC models converge to the point-mass distribution concentrated on this equilibrium. In this paper we provide explicit bounds in probability for the convergence of such steady states, combining the stochastic bounds on the local error with control-theoretic tools used in the stability analysis of perturbed dynamical systems to bound the global accumulation of error. We also adapt this method to compute bounds on the transient dynamics. The approach is illustrated by a wireless sensor network example.
ISSN:0166-5316
1872-745X
DOI:10.1016/j.peva.2013.08.012